

Corey Haeder

Committee Chair

Rinker Materials

Mission & Goals

The goal of the Research committee is to provide the concrete drainage industry with advances that build, defend and enhance precast specifications enabling pipe and box culverts to increase our competitive advantage.

Investigating alternate product claims arming our industry with relevant information proving concrete pipe and box culverts are the most resilient, sustainable, and durable product available to the market.

Resarch Committee Snapshot

Committee Leadership

Corey Haeder, P.E.

Chair

Rinker Materials

Bill Washabaugh, P.E. Vice Chair Northern Concrete Pipe

Margarita Takou, PhD., P.E. Liaison ACPA

Members (36) Rinker Materials (7) Oldcastle Infrastructure (5)

County Materials (4)
Northern Concrete (3)

Vianini Pipe

Thompson Pipe Group

Scituate Concrete

MBCC Group

Hamilton Kent

Geneva Pipe Company

CTLGroup

CP&P

Coastal Pipeline Products

Besser

Afinitas

ACPA (6)

Freeze Thaw Project Complete

- Developed trust and relationships
- Proven durability with state-of-theart research
- Use results as needed

Figure 57. Sandcastles ready to collapse due to saturation by the incoming tide, Excess water fills air voids and res in loss of suction stress between particles and results in slumping (free image Pixabay).

MAIN POINTS

- Low W/C + fine compaction voids =
 F-T durability
- "If it stands it is durable" SEM
 Analysis small voids capillary suction
- Sandcastle Comparison

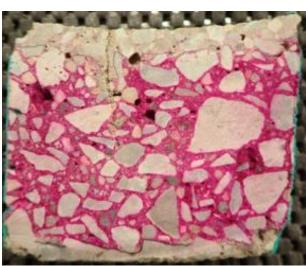
EFFECT OF CRACKS ON PIPE PERFORMANCE

- 1. Literature Review Survey Sample Fab
- 2. Chloride Ion & Carbonation Movement
- 3. Corrosion Initiation Drawn Wire and WWF
- 4. Corrosion Rates & Autogenous Healing
- **5. Corrosion Propagation**
- 6. Corrosion Model to Predict Service Life
- 7. Impact of Corrosion on Pipe Performance

Effects of Cracks on Pipe Performance

WHY THIS IS LIKE NO OTHER

- Examine the durability/service life of reinforced concrete pipe
- Determine how corrosion initiates and propagates in typical drycast concrete pipe and in the presence of cracking
- Develop a service-life model and recommend model inputs to account for cracking



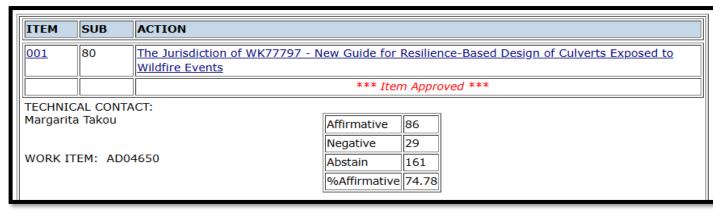
Interim Conclusions

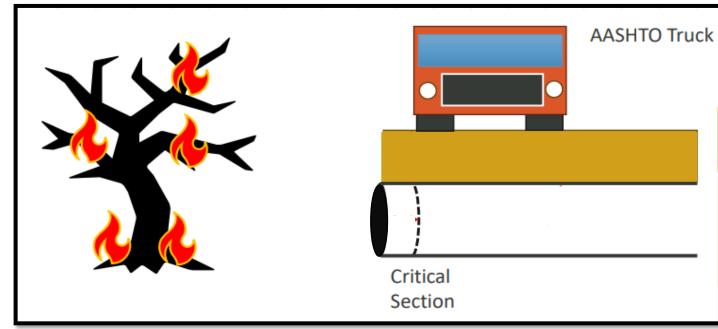
- Field service of concrete pipe has been very good.
- Cracks less than 0.004" do not adversely affect chloride diffusion.
- Cracks (moderate size) do not have a major influence on carbonation
- Fine cracks can heal (AH) Large cracks up to 0.080" might but less reliable.
- Corrosion prediction is highly complex such that modeling is not practical
- Need to recognize differences in wet-cast and dry-cast concrete pipe
- Good news:
 - Generally, in-service conditions are favorable for concrete pipe durability
 - Cracks are likely to have minimal relative impact
 - Nothing indicates the need for more restrictive limits on crack widths

Laboratory Studies (ongoing)

- Carbonation resistance of 100%RH Dry-Cast concrete with and without cracks
- Corrosion rate measurements of submerged and halfsubmerged samples (data reduction) & Autopsies
- Define Model inputs identify knowledge gaps
- Model corrosion in contact with deicer solutions
- Crack width identification (accuracy)
- Write-up Draft Final Report (JUNE 2025)

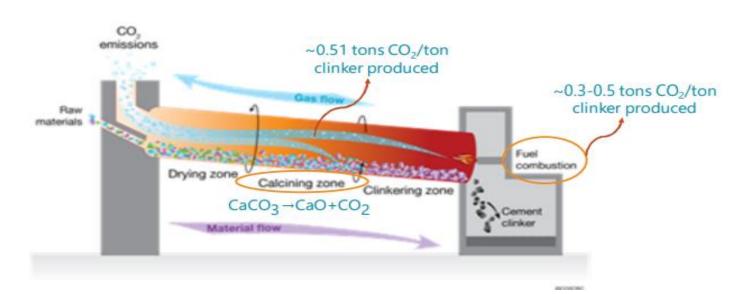
Video update from WJE (~16 minutes) available on Smartsheet or contact Research Committee leaders for a link.





Resiliency Project Status (stuck in negative hell)

- ASTM E60 pushing for general guide
- ASTM E05 (fire) jurisdiction ballot
 - >29 Move to E05
 - ➤86 Keep in E60 (approved)
- State DOTs requesting webinars
- Need to publish a paper that can be used at state level
- Where do we go from here ???



Type 1L Cement Study

- Impact of Type IL variability on durability and sustainability
- Compare C150 (Type I/II) and C595 (Type 1L)
- Cold Hard Facts for discussions with Cement Producers
- Does 1L improve EPD?Is it really *GREEN*?

Type 1L Cement Study (March 10, 2025)

Phase 1: Literature review and data collection

Phase 2: Sample study and testing

Phase 3: Durability, longevity & sustainability

Phase 4: Shipping Segregation

Microplastics Project

QUESTION: Does plastic drainage pipe shed nurdles? If so – how much?

Need a Researcher

MTSU

University of Virginia

??

Goal – cast doubt on use of plastic pipe . . .

Questions?

Corey Haeder corey.haeder@rinkerpipe.com

Research Committee Chair

Rinker Materials