concranle plpa

DESIGN MANUAL

Copyright 2011
 AMERICAN CONCRETE PIPE ASSOCIATION

All rights reserved.
This book or any part thereof must not be reproduced in any form without the written permission of the American Concrete Pipe Association.

Library of Congress catalog number 78-58624

Printed in the United States of America
First printing February, 1970
15,000 copies
Second printing July, 1970
15,000 copies
Third printing (revised) February, 1974
15,000 copies
Fourth printing (revised) June, 1978
10,000 copies
Fifth printing (revised) June, 1980
15,000 copies
Sixth printing (revised) February, 1985
10,000 copies
Seventh printing (revised) October, 1987
10,000 copies
Eighth printing March, 1990
5,000 copies
Ninth printing November, 1992
5,000 copies
Tenth printing March, 1995
2,500 copies
Eleventh printing November, 1996
2,500 copies
Twelfth printing August, 1998
2,500 copies
Thirteenth printing (revised) June, 2000
4,000 copies
Fourteenth printing February, 2001
3,000 copies
Fifteenth printing February, 2002
3,000 copies
Sixteenth printing (revised) May, 2004
2,000 copies
Seventeenth printing March, 2005
2,000 copies

Eighteenth printing September, 2006
1,000 copies
Nineteenth printing April, 2007
5,000 copies
Revised October, 2011

Technical programs of the American Concrete Pipe Association, since its founding in 1907, have been designed to compile engineering data on the hydraulics, loads and supporting strengths and design of concrete pipe. Information obtained is disseminated to producers and consumers of concrete pipe through technical literature and promotional handbooks. Other important activities of the Association include development of product specifications, government relations, participation in related trade and professional societies, advertising and promotion, an industry safety program and educational training. These services are made possible by the financial support of member companies located throughout the United States, Canada, and in almost 30 foreign countries.

FOREWORD

The principal objective in compiling the material for this CONCRETE PIPE DESIGN MANUAL was to present data and information on the design of concrete pipe systems in a readily usable form. The Design Manual is a companion volume to the CONCRETE PIPE HANDBOOK which provides an up-to-date compilation of the concepts and theories which form the basis for the design and installation of precast concrete pipe sewers and culverts and explanations for the charts, tables and design procedures summarized in the Design Manual.

Special recognition is acknowledged for the contribution of the staff of the American Concrete Pipe Association and the technical review and assistance of the engineers of the member companies of the Association in preparing this Design Manual. Also acknowledged is the development work of the American Association of State Highway and Transportation Officials, American Society of Civil Engineers, U. S. Army Corps of Engineers, U. S. Federal Highway Administration, Bureau of Reclamation, Iowa State University, Natural Resources Conservation Service, Water Environment Federation, and many others. Credit for much of the data in this Manual goes to the engineers of these organizations and agencies. Every effort has been made to assure accuracy, and technical data are considered reliable, but no guarantee is made or liability assumed.

CONTENTS

FOREWORD
INDEX OF CONTENTS
Chapter 1. INTRODUCTION
Chapter 2. HYDRAULICS OF SEWERS
Chapter 3. HYDRAULICS OF CULVERTS
Chapter 4. LOADS AND SUPPORTING STRENGTHS
Chapter 5. SUPPLEMENTAL DATA
\section*{TABLES}
FIGURES
APPENDIXA
APPENDIX B Marston/Spangler Design Procedure
GLOSSARY OF TERMS
CONDENSED BIBLIOGRAPHY

INDEX OF CONTENTS

FOREWORD iii
Chapter 1. INTRODUCTION 1
Chapter 2. HYDRAULICS OF SEWERS
Sanitary Sewers 3
Determination of Sewer System Type 3
Determination of Design Flow 3
Average Flow 3
Peak Flow 3
Minimum Flow 4
Selection of Pipe Size 4
Manning's Formula 4
Manning's "n" Value 4
Full Flow Graphs 5
Partially Full Flow Graphs 5
Determination of Flow Velocity 5
Minimum Velocity 5
Maximum Velocity 5
Storm Sewers 5
Determination of Sewer System Type 5
Determination of Design Flow 5
Runoff Coefficient 6
Rainfall Intensity 6
Time of Concentration 6
Runoff Area 6
Selection of Pipe Size 7
Manning's Formula 7
Manning's "n" Value 7
Determination of Flow Velocity 7
Minimum Velocity 7
Maximum Velocity 7
Example Problems 8
2-1 Storm Sewer Flow 8
2-2 Required Sanitary Sewer Size 8
2-3 Storm Sewer Minimum Slope 9
2-4 Sanitary Sewer Design 9
2-5 Storm Sewer Design 11
2-6 Sanitary Sewer Design 13
Chapter 3. HYDRAULICS OF CULVERTS
Determination of Design Flow 15
Factors Affecting Culvert Discharge 15
Inlet Control 15
Outlet Control 16
Critical Depth 16
Selection of Culvert Size 17
Culvert Capacity Chart Procedure 17
Nomograph Procedure 18
Example Problems 20
3-1 Culvert Capacity Chart Procedure 20
3-2 Nomograph Procedure 22
3-3 Culvert Design 23
3-4 Culvert Design 24
Chapter 4. LOADS AND SUPPORTING STRENGTHS
Installation Types 27
Trench 27
Positive Projecting Embankment 27
Negative Projecting Embankment 27
Jacked or Tunneled 27
Standard Installations 29
Background 29
Introduction 29
Four Installations 32
Load Pressures 32
Selection of Standard Installation 37
Determination of Earth Load 37
Embankment Soil Load 37
Trench Soil Load 38
Negative Projecting Embankment Soil Load 39
Jacked or Tunneled Soil Load 41
Determination of Live Load 41
Highways 42
Airports 46
Rigid Pavement 47
Flexible Pavement. 47
Railroads 49
Construction Loads 50
Selection of Bedding 50
Bedding Factors 50
Determination of Bedding Factor 53
Application of Factor of Safety 54
Selection of Pipe Strength 54
Example Problems
4-1 Trench Installation 58
4-2 Positive Projecting Embankment Installation 60
4-3 Negative Projecting Embankment Installation 63
4-4 Jacked or Tunneled Installation 65
4-5 Wide Trench Installation 67
4-6 Positive Projecting Embankment Installation Vertical Elliptical Pipe 69
4-7 Highway Live Load 71
4-8 Aircraft Live Load - Rigid Pavement 73
4-9 Aircraft Live Load - Flexible Pavement 76
4-10 Railroad Live Load 80
Chapter 5. SUPPLEMENTAL DATA
Circular Concrete Pipe 83
Elliptical Concrete Pipe 83
Horizontal Elliptical Pipe 83
Vertical Elliptical Pipe 86
Concrete Arch Pipe 86
Concrete Box Sections 89
Special Sections 91
Precast Concrete Manhole Sections 92
Flat Base Pipe 93
Standard Specifications for Concrete Pipe 93
Pipe Joints 98
Jacking Concrete Pipe 103
Required Characteristics of Concrete Jacking Pipe 103
The Jacking Method 103
Bends and Curves 104
Deflected Straight Pipe 104
Radius Pipe 105
Bends and Special Sections 107
Significance of Cracking 108
TABLES
Table 1 Sewage Flows Used For Design 112
Table 2 Sewer Capacity Allowances For Commercial And Industrial Areas. 113
Table 3 Full Flow Coefficient Values - Circular Concrete Pipe 114
Table 4 Full Flow Coefficient Values - Elliptical Concrete Pipe 115
Table 5 Full Flow Coefficient Values - Concrete Arch Pipe 115
Table 6 Full Flow Coefficient Values - Precast Concrete Box Sections 116
Table 7 Slopes Required for $\mathrm{V}=2 \mathrm{fps}$ at Full and Half Full Flow 117
Table 8 Runoff Coefficients for Various Areas 118
Table 9 Rainfall Intensity Conversion Factors 118
Table 10 Recurrence Interval Factors 118
Table 11 Nationwide Flood-Frequency Projects 119
Table 12 Entrance Loss Coefficients 119
Table 13 Transition Widths - 12 inch Circular Pipe 120
Table 14 Transition Widths - 15 inch Circular Pipe 121
Table 15 Transition Widths - 18 inch Circular Pipe 122
Table 16 Transition Widths - 21 inch Circular Pipe 123
Table 17 Transition Widths - 24 inch Circular Pipe 124
Table 18 Transition Widths - 27 inch Circular Pipe 125
Table 19 Transition Widths - 30 inch Circular Pipe 126
Table 20 Transition Widths - 33 inch Circular Pipe 127
Table 21 Transition Widths - 36 inch Circular Pipe 128
Table 22 Transition Widths - 42 inch Circular Pipe 129
Table 23 Transition Widths - 48 inch Circular Pipe 130
Table 24 Transition Widths - 54 inch Circular Pipe 131
Table 25 Transition Widths - 60 inch Circular Pipe 132
Table 26 Transition Widths - 66 inch Circular Pipe 133
Table 27 Transition Widths - 72 inch Circular Pipe 134
Table 28 Transition Widths - 78 inch Circular Pipe 135
Table 29 Transition Widths - 84 inch Circular Pipe 136
Table 30 Transition Widths - 90 inch Circular Pipe 137
Table 31 Transition Widths - 96 inch Circular Pipe 138
Table 32 Transition Widths - 102 inch Circular Pipe 139
Table 33 Transition Widths - 108 inch Circular Pipe 140
Table 34 Transition Widths - 114 inch Circular Pipe 141
Table 35 Transition Widths - 120 inch Circular Pipe 142
Table 36 Transition Widths - 126 inch Circular Pipe 143
Table 37 Transition Widths - 132 inch Circular Pipe 144
Table 38 Transition Widths - 138 inch Circular Pipe 145
Table 39 Transition Widths - 144 inch Circular Pipe 146
Table 40 Design Values of Settlement Ratio 147
Table 41 Design Values of Coefficient of Cohesion 147
Table 42 Highway Loads on Circular Pipe 148
Table 43 Highway Loads on Horizontal Elliptical Pipe 149
Table 44 Highway Loads on Vertical Elliptical Pipe 150
Table 45 Highway Loads on Arch Pipe 151
Table 46 Pressure Coefficients for a Single Load 152
Table 47 Pressure Coefficients for Two Loads Spaced 0.8Rs Apart 153
Table 48 Pressure Coefficients for Two Loads Spaced 1.6Rs Apart 154
Table 49 Pressure Coefficients for Two Loads Spaced 2.4Rs Apart 155
Table 50 Pressure Coefficients for Two Loads Spaced 3.2Rs Apart 156
Table 51 Pressure Coefficients for a Single Load Applied on Subgrade or Flexible Pavement 157
Table 52 Values of Radius of Stiffness 158
Table 53 Aircraft Loads on Circular Pipe 159
Table 54 Aircraft Loads on Horizontal Elliptical Pipe 160
Table 55 Aircraft Loads on Arch Pipe 161
Table 56 Railroad Loads on Circular Pipe 162
Table 57 Railroad Loads on Horizontal Elliptical Pipe. 163
Table 58 Railroad Loads on Arch Pipe 164
Table 59 Bedding Factors for Vertical Elliptical Pipe - Positive Projecting Embankment Installation 165
Table 60 Bedding Factors for Horizontal Elliptical Pipe - Positive Projecting Embankment Installation 166
Table 61 Bedding Factors for Arch Pipe - Positive Projecting Embankment Installation 167
Table 62 Type I Fill Height Table - 1 ft . through 15 ft 168
Table 63 Type I Fill Height Table - 16 ft . through 30 ft 169
Table 64 Type I Fill Height Table - 31 ft . through 45 ft 170
Table 65 Type I Fill Height Table - 46 ft . through 60 ft 171
Table 66 Type 2 Fill Height Table - 1 ft . through 15 ft 172
Table 67 Type 2 Fill Height Table - 16 ft . through 30 ft 173
Table 68 Type 2 Fill Height Table - 31 ft . through 45 ft 174
Table 69 Type 3 Fill Height Table - 1 ft . through 18 ft 175
Table 70 Type 3 Fill Height Table - 19 ft . through 35 ft 176
Table 71 Type 4 Fill Height Table - 1 ft . through 15 ft 177
Table 72 Type 4 Fill Height Table - 16 ft . through 23 ft 178
FIGURES
Figure 1 Ratio of Extreme Flows to Average Daily Flow 180
Figure 2 Flow for Circular Pipe Flowing Full $\mathrm{n}=0.010$ 181
Figure 3 Flow for Circular Pipe Flowing Full $\mathrm{n}=0.011$ 182
Figure 4 Flow for Circular Pipe Flowing Full $\mathrm{n}=0.012$ 183
Figure 5 Flow for Circular Pipe Flowing Full $\mathrm{n}=0.013$ 184
Figure 6 Flow for Horizontal Elliptical Pipe Flowing Full 185
Figure 7 Flow for Horizontal Elliptical Pipe Flowing Full 186
Figure 8 Flow for Horizontal Elliptical Pipe Flowing Full 187
Figure 9 Flow for Horizontal Elliptical Pipe Flowing Full 188
Figure 10 Flow for Vertical Elliptical Pipe Flowing Full 189
Figure 11 Flow for Vertical Elliptical Pipe Flowing Full 190
Figure 12 Flow for Vertical Elliptical Pipe Flowing Full 191
Figure 13 Flow for Vertical Elliptical Pipe Flowing Full 192
Figure 14 Flow for Arch Pipe Flowing Full 193
Figure 15 Flow for Arch Pipe Flowing Full 194
Figure 16 Flow for Arch Pipe Flowing Full 195
Figure 17 Flow for Arch Pipe Flowing Full 196
Figure 18 Flow for Box Sections Flowing Full 197
Figure 19 Flow for Box Sections Flowing Full 199
Figure 20 Relative Velocity and Flow in Circular Pipe for Any Depth of Flow 201
Figure 21 Relative Velocity and Flow in Horizontal Elliptical Pipe for Any Depth of Flow 202
Figure 22 Relative Velocity and Flow in Vertical Elliptical Pipe for Any Depth of Flow 203
Figure 23 Relative Velocity and Flow in Arch Pipe for Any Depth of Flow 204
Figure 24 Relative Velocity and Flow in Precast Concrete Box Sections for Any Depth of Flow 205
Figure 25 2-Year, 30 Minute Rainfall Intensity Map 214
Figure 26 Intensity-Duration Curve. 214
Figure 27 California Chart "A" for Calculation of Design Discharges 215
Figure 28 Critical Depth Circular Pipe 216
Figure 29 Critical Depth Horizontal Elliptical Pipe 217
Figure 30 Critical Depth Vertical Elliptical Pipe 218
Figure 31 Critical Depth Arch Pipe 219
Figure 32 Critical Depth Precast Concrete Box Sections 221
Figure 33 Headwater Depth for Circular Concrete Pipe Culverts with Inlet Control 222
Figure 34 Headwater Depth for Horizontal Elliptical Concrete Pipe Culverts with Inlet Control 223
Figure 35 Headwater Depth for Vertical Elliptical Concrete Pipe Culverts with Inlet Control 224
Figure 36 Headwater Depth for Arch Concrete Pipe Culverts with Inlet Control 225
Figure 37 Headwater Depth for Concrete Box Culverts with Inlet Control 226
Figure 38 Head for Circular Concrete Culverts Flowing Full 227
Figure 39 Head for Elliptical Concrete Culverts Flowing Full 228
Figure 40 Head for Concrete Arch Culverts Flowing Full 229
Figure 41 Head for Concrete Box Culverts Flowing Full 230
Figure 42 Culvert Capacity 12-Inch Diameter Pipe 231
Figure 43 Culvert Capacity 15-Inch Diameter Pipe 232
Figure 44 Culvert Capacity 18-Inch Diameter Pipe 233
Figure 45 Culvert Capacity 21-Inch Diameter Pipe 234
Figure 46 Culvert Capacity 24-Inch Diameter Pipe 235
Figure 47 Culvert Capacity 27-Inch Diameter Pipe 236
Figure 48 Culvert Capacity 30-Inch Diameter Pipe 237
Figure 49 Culvert Capacity 33-Inch Diameter Pipe 238
Figure 50 Culvert Capacity 36-Inch Diameter Pipe 239
Figure 51 Culvert Capacity 42-Inch Diameter Pipe 240
Figure 52 Culvert Capacity 48-Inch Diameter Pipe 241
Figure 53 Culvert Capacity 54-Inch Diameter Pipe 242
Figure 54 Culvert Capacity 60-Inch Diameter Pipe 243
Figure 55 Culvert Capacity 66-Inch Diameter Pipe 244
Figure 56 Culvert Capacity 72-Inch Diameter Pipe 245
Figure 57 Culvert Capacity 78-Inch Diameter Pipe 246
Figure 58 Culvert Capacity 84-Inch Diameter Pipe 247
Figure 59 Culvert Capacity 90-Inch Diameter Pipe 248
Figure 60 Culvert Capacity 96-Inch Diameter Pipe 249
Figure 61 Culvert Capacity 102-Inch Diameter Pipe 250
Figure 62 Culvert Capacity 108-Inch Diameter Pipe 251
Figure 63 Culvert Capacity 114-Inch Diameter Pipe 252
Figure 64 Culvert Capacity 120-Inch Diameter Pipe 253
Figure 65 Culvert Capacity 132-Inch Diameter Pipe 254
Figure 66 Culvert Capacity 144-Inch Diameter Pipe 255
Figure 67 Culvert Capacity 14×23-Inch Horizontal Elliptical Equivalent 18 -Inch Circular 256
Figure 68 Culvert Capacity 19×30-Inch Horizontal Elliptical Equivalent 24 -Inch Circular 257
Figure 69 Culvert Capacity 24×38-Inch Horizontal Elliptical Equivalent 30-Inch Circular 258
Figure 70 Culvert Capacity 29×45-Inch Horizontal Elliptical Equivalent 36 -Inch Circular 259
Figure 71 Culvert Capacity 34×54-Inch Horizontal Elliptical Equivalent 42-Inch Circular 260
Figure 72 Culvert Capacity 38×60-Inch Horizontal Elliptical Equivalent 48-Inch Circular 261
Figure 73 Culvert Capacity 43×68-Inch Horizontal Elliptical Equivalent 54-Inch Circular 262
Figure 74 Culvert Capacity 48×76-Inch Horizontal Elliptical Equivalent 60 -Inch Circular 263
Figure 75 Culvert Capacity 53×83-Inch Horizontal Elliptical Equivalent 66 -Inch Circular 264
Figure 76 Culvert Capacity 58×91-Inch Horizontal Elliptical Equivalent 72-Inch Circular 265
Figure 77 Culvert Capacity 63×98-Inch Horizontal Elliptical Equivalent 78-Inch Circular 266
Figure 78 Culvert Capacity 68×106-Inch Horizontal Elliptical Equivalent 84 -Inch Circular 267
Figure 79 Culvert Capacity 72×113-Inch Horizontal Elliptical Equivalent 90-Inch Circular 268
Figure 80 Culvert Capacity 77×121-Inch Horizontal Elliptical Equivalent 96-Inch Circular 269
Figure 81 Culvert Capacity 82×128-Inch Horizontal Elliptical Equivalent 102-Inch Circular 270
Figure 82 Culvert Capacity 87×136-Inch Horizontal Elliptical Equivalent 108-Inch Circular 271
Figure 83 Culvert Capacity 92×143-Inch Horizontal Elliptical Equivalent 114-Inch Circular 272
Figure 84 Culvert Capacity 97×151-Inch Horizontal Elliptical Equivalent 120-Inch Circular 273
Figure 85 Culvert Capacity 106×166-Inch Horizontal Elliptical Equivalent 132-Inch Circular 274
Figure 86 Culvert Capacity 116×180-Inch Horizontal Elliptical Equivalent 144-Inch Circular 275
Figure 87 Culvert Capacity 11×18-Inch Arch Equivalent 15-Inch Circular 276
Figure 88 Culvert Capacity 13×22-Inch Arch Equivalent 18-Inch Circular 277
Figure 89 Culvert Capacity 15×26-Inch Arch Equivalent 21-Inch Circular 278
Figure 90 Culvert Capacity 18×28-Inch Arch Equivalent 24 -Inch Circular 279
Figure 91 Culvert Capacity 22×36-Inch Arch Equivalent 30 -Inch Circular 280
Figure 92 Culvert Capacity 27×44-Inch Arch Equivalent 36 -Inch Circular 281
Figure 93 Culvert Capacity 31×51-Inch Arch Equivalent 42-Inch Circular 282
Figure 94 Culvert Capacity 36×58-Inch Arch Equivalent 48-Inch Circular 283
Figure 95 Culvert Capacity 40×65-Inch Arch Equivalent 54-Inch Circular 284
Figure 96 Culvert Capacity 45×73-Inch Arch Equivalent 60 -Inch Circular 285
Figure 97 Culvert Capacity 54×88-Inch Arch Equivalent 72-Inch Circular 286
Figure 98 Culvert Capacity 62×102-Inch Arch Equivalent 84-Inch Circular 287
Figure 99 Culvert Capacity 72×115-Inch Arch Equivalent 90 -Inch Circular 288
Figure 100 Culvert Capacity 77×122-Inch Arch Equivalent 96 -Inch Circular 289
Figure 101 Culvert Capacity 87×138-Inch Arch Equivalent 108-Inch Circular 290
Figure 102 Culvert Capacity 97×154-Inch Arch Equivalent 120-Inch Circular 291
Figure 103 Culvert Capacity 106×169-Inch Arch Equivalent 132-Inch Circular 292
Figure 104 Culvert Capacity 3×2-Foot Box Equivalent 33 -Inch Circular 293
Figure 105 Culvert Capacity 3×3-Foot Box Equivalent 39 -Inch Circular 294
Figure 106 Culvert Capacity 4×2-Foot Box Equivalent 36-Inch Circular 295
Figure 107 Culvert Capacity 4×3-Foot Box Equivalent 42-Inch Circular 296
Figure 108 Culvert Capacity 4×4-Foot Box Equivalent 54-Inch Circular 297
Figure 109 Culvert Capacity 5×3-Foot Box Equivalent 48-Inch Circular 298
Figure 110 Culvert Capacity 5×4-Foot Box Equivalent 60 -Inch Circular 299
Figure 111 Culvert Capacity 5×5-Foot Box Equivalent 66 -Inch Circular 300
Figure 112 Culvert Capacity 6×3-Foot Box Equivalent 57 -Inch Circular 301

Figure 113 Culvert Capacity 6×4-Foot Box Equivalent 66 -Inch Circular ... 302
Figure 114 Culvert Capacity 6×5-Foot Box Equivalent 75-Inch Circular ... 303
Figure 115 Culvert Capacity 6×6-Foot Box Equivalent 81 -Inch Circular ... 304
Figure 116 Culvert Capacity 7×4-Foot Box Equivalent 71 -Inch Circular ... 305
Figure 117 Culvert Capacity 7×5-Foot Box Equivalent 79-Inch Circular 306
Figure 118 Culvert Capacity
Figure 119 Culvert Capacity
Figure 120 Culvert Capacity
Figure 121 Culvert Capacity
Figure 122 Culvert Capacity 8×6-Foot Box Equivalent 93 -Inch Circular 311
Figure 123 Culvert Capacity 8×7-Foot Box Equivalent 101-Inch Circular....... 312
Figure 124 Culvert Capacity 8×8-Foot Box Equivalent 108-Inch Circular....... 313
Figure 125 Culvert Capacity 9×5-Foot Box Equivalent 90-Inch Circular......... 314
Figure 126 Culvert Capacity 9×6-Foot Box Equivalent 99-Inch Circular......... 315
Figure 127 Culvert Capacity 9×7-Foot Box Equivalent 107-Inch Circular....... 316
Figure 128 Culvert Capacity 9×8-Foot Box Equivalent 114-Inch Circular 317
Figure 129 Culvert Capacity 9×9-Foot Box Equivalent 121-Inch Circular....... 318
Figure 130 Culvert Capacity 10×5-Foot Box Equivalent 94-inch Circular....... 319
Figure 131 Culvert Capacity 10×6-Foot Box Equivalent 104-Inch Circular..... 320
Figure 132 Culvert Capacity 10×7-Foot Box Equivalent 112-Inch Circular 321
Figure 133 Culvert Capacity 10×8-Foot Box Equivalent 120-Inch Circular..... 322
Figure 134 Culvert Capacity 10×9-Foot Box Equivalent 128-Inch Circular..... 323
Figure 135 Culvert Capacity 10×10-Foot Box Equivalent 135-Inch Circular... 324
Figure 136 Culvert Capacity 11×4-Foot Box Equivalent 88 -Inch Circular 325
Figure 137 Culvert Capacity 11×6-Foot Box Equivalent 109-Inch Circular 326
Figure 138 Culvert Capacity 11×8-Foot Box Equivalent 126-Inch Circular 327
Figure 139 Culvert Capacity $11 \times$ 10-Foot Box Equivalent 141-Inch Circular ... 328
Figure 140 Culvert Capacity 11×11-Foot Box Equivalent 148-Inch Circular ... 329
Figure 141 Culvert Capacity 12×4-Foot Box Equivalent 92-Inch Circular....... 330
Figure 142 Culvert Capacity 12×6-Foot Box Equivalent 113-Inch Circular 331
Figure 143 Culvert Capacity 12×8-Foot Box Equivalent 131-Inch Circular..... 332
Figure 144 Culvert Capacity 12×10-Foot Box Equivalent 147-Inch Circular... 333
Figure 145 Culvert Capacity 12×12-Foot Box Equivalent 161-Inch Circular... 334
Figure 146 Essential Features of Types of Installations................................ 335
$\begin{array}{ll}\text { Figure } 147 & \text { Earth Loads on Jacked or Tunneled Installations } \\ \text { Sand and Gravel Trench Term .. } 336\end{array}$
Figure 148 Earth Loads on Jacked or Tunneled Installations
Sand and Gravel Cohesion Term.. 337
$\begin{array}{ll}\text { Figure } 149 & \text { Earth Loads on Jacked or Tunneled Installations } \\ & \text { Saturated Top Soil Trench Term.. } 338\end{array}$
Figure 150 Earth Loads on Jacked or Tunneled Installations Saturated Top Soil Cohesion Term 339
Figure 151 Earth Loads on Jacked or Tunneled Installations Ordinary Clay Trench Term

340
Figure 152 Earth Loads on Jacked or Tunneled Installations
Ordinary Clay Cohesion Term 341
Figure 153 Earth Loads on Jacked or Tunneled Installations Saturated Clay Trench Term 342
Figure 154 Earth Loads on Jacked or Tunneled Installations Saturated Clay Cohesion Term 343
Figure 155 Trench Backfill Loads on Vertical Elliptical Pipe Sand and Gravel (Fill Height = 2 to 10 ft) 344
Figure 156 Trench Backfill Loads on Vertical Elliptical Pipe Sand and Gravel (Fill Height $=10$ to 50 ft) 345
Figure 157 Trench Backfill Loads on Vertical Elliptical Pipe Saturated Top Soil (Fill Height $=2$ to 10 ft) 346
Figure 158 Trench Backfill Loads on Vertical Elliptical Pipe Saturated Top Soil (Fill Height = 10 to 50) 347
Figure 159 Trench Backfill Loads on Vertical Elliptical Pipe Ordinary Clay (Fill Height $=2$ to 10 ft) 348
Figure 160 Trench Backfill Loads on Vertical Elliptical Pipe Ordinary Clay (Fill Height = 10 to 50), 349
Figure 161 Trench Backfill Loads on Vertical Elliptical Pipe Saturated Clay (Fill Height $=2$ to 10 ft) 350
Figure 162 Trench Backfill Loads on Vertical Elliptical Pipe Saturated Clay (Fill Height = 10 to 50 ft) 351
Figure 163 Trench Backfill Loads on Horizontal Elliptical Pipe Sand and Gravel (Fill Height = 2 to 10 ft) 352
Figure 164 Trench Backfill Loads on Horizontal Elliptical Pipe Sand and Gravel (Fill Height = 10 to 50 ft) 353
Figure 165 Trench Backfill Loads on Horizontal Elliptical Pipe Saturated Top Soil (Fill Height = 2 to 10 ft) 354
Figure 166 Trench Backfill Loads on Horizontal Elliptical Pipe Saturated Top Soil (Fill Height = 10 to 50 ft) 355
Figure 167 Trench Backfill Loads on Horizontal Elliptical Pipe Ordinary Clay (Fill Height $=2$ to 10 ft) 356
Figure 168 Trench Backfill Loads on Horizontal Elliptical Pipe Ordinary Clay (Fill Height = 10 to 50 ft) 357
Figure 169 Trench Backfill Loads on Horizontal Elliptical Pipe Saturated Clay (Fill Height = 2 to 10 ft) 358
Figure 170 Trench Backfill Loads on Horizontal Elliptical Pipe Saturated Clay (Fill Height $=10$ to 50 ft) 359
Figure 171 Trench Backfill Loads on Arch Pipe Sand and Gravel (Fill Height $=2$ to 10 ft) 360
Figure 172 Trench Backfill Loads on Arch Pipe Sand and Gravel (Fill Height = 10 to 50 ft) 361
Figure 173 Trench Backfill Loads on Arch Pipe Saturated Top Soil (Fill Height $=2$ to 10 ft) 362
Figure 174 Trench Backfill Loads on Arch Pipe Saturated
Top Soil (Fill Height = 10 to 50 ft) 363
Figure 175 Trench Backfill Loads on Arch Pipe Ordinary Clay (Fill Height = 2 to 10 ft) 364
Figure 176 Trench Backfill Loads on Arch Pipe Ordinary Clay (Fill Height = 10 to 50 ft) 365
Figure 177 Trench Backfill Loads on Arch Pipe Saturated Clay (Fill Height = 2 to 10 ft) 366
Figure 178 Trench Backfill Loads on Arch Pipe Saturated Clay (Fill Height = 10 to 50 ft) 367
Figure 179 Embankment Fill Loads on Vertical Elliptical Pipe Positive Projecting rsdp $=0$ 368
Figure 180 Embankment Fill Loads on Vertical Elliptical Pipe Positive Projecting rsap $=01$ 369
Figure 181 Embankment Fill Loads on Vertical Elliptical Pipe Positive Projecting rsap $=0.3$ 370
Figure 182 Embankment Fill Loads on Vertical Elliptical Pipe Positive Projecting rsdp $=0.5$ 371
Figure 183 Embankment Fill Loads on Vertical Elliptical Pipe Positive Projecting rsdp = 1.0 372
Figure 184 Embankment Fill Loads on Horizontal Elliptical Pipe Positive Projecting rsdp $=0$ 373
Figure 185 Embankment Fill Loads on Horizontal Elliptical Pipe Positive Projecting rsdp $=0.1$ 374
Figure 186 Embankment Fill Loads on Horizontal Elliptical Pipe Positive Projecting rsdp $=0.3$ 375
Figure 187 Embankment Fill Loads on Horizontal Elliptical Pipe Positive Projecting rsdp $=0.5$ 376
Figure 188 Embankment Fill Loads on Horizontal Elliptical Pipe Positive Projecting rsdp = 1.0 377
Figure 189 Embankment Fill Loads on Arch Pipe Positive Projecting $\mathrm{r}_{\mathrm{sd}} \mathrm{p}=0$ 378
Figure 190 Embankment Fill Loads on Arch Pipe Positive Projecting rsap $=0.1$ 379
Figure 191 Embankment Fill Loads on Arch Pipe Positive Projecting $\mathrm{r}_{\mathrm{sd}} \mathrm{p}=0.3$ 380
Figure 192 Embankment Fill Loads on Arch Pipe Positive Projecting $\mathrm{r}_{\mathrm{sd}} \mathrm{p}=0.5$ 381
Figure 193 Embankment Fill Loads on Arch Pipe Positive Projecting rsap = 1.0 382
Figure 194 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=0.5$ rsd $=0$ 383
Figure 195 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=0.5$ rsd $=-0.1$ 384
Figure 196 Embankment Fill Loads on Circular Pipe Negative Projecting $p^{\prime}=0.5 \mathrm{rsd}=-0.3$ 385
Figure 197 Embankment Fill Loads on Circular Pipe Negative Projecting $\mathrm{p}^{\prime}=0.5 \mathrm{rsd}_{\mathrm{sd}}=-0.5$ 386
Figure 198 Embankment Fill Loads on Circular Pipe Negative Projecting $\mathrm{p}^{\prime}=0.5 \mathrm{rsd}=-1.0$ 387
Figure 199 Embankment Fill Loads on Circular Pipe Negative Projecting $\mathrm{p}^{\prime}=1.0 \mathrm{rsd}=0$ 388
Figure 200 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.0 \mathrm{rsd}=-0.1$ 389
Figure 201 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.0 \mathrm{rsd}=-0.3$ 390
Figure 202 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.0 \mathrm{rsd}=-0.5$ 391
Figure 203 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.0 \mathrm{rsd}=-1.0$ 392
Figure 204 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.5 \mathrm{rsd}=0$ 393
Figure 205 Embankment Fill Loads on Circular Pipe Negative Projecting ${ }^{\prime}=1.5 \mathrm{r}_{\text {sd }}=-0.1$ 394
Figure 206 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.5 \mathrm{rsd}=-0.3$ 395
Figure 207 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.5 \mathrm{rsd}=-0.5$ 396
Figure 208 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=1.5 \mathrm{rsd}=-1.0$ 397
Figure 209 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=2.0 \mathrm{rsd}=0$ 398
Figure 210 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=2.0 \mathrm{r}_{\text {sd }}=-0.1$ 399
Figure 211 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=2.0 \mathrm{rsd}_{\mathrm{sd}}=-0.3$ 400
Figure 212 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=2.0 \mathrm{rsd}=-0.5$ 401
Figure 213 Embankment Fill Loads on Circular Pipe Negative Projecting p' $=2.0$ rsd $=-1.0$ 402
Figure 214 Load Coefficient Diagram for Trench Installations 403
APPENDIX A
Table A-1 Square Roots of Decimal Number ($\mathrm{S}^{1 / 2}$ in Manning's Formula) 406
Table A-2 Three-Eighths Powers of Numbers 407
Table A-3 Two-Thirds Powers of Numbers 408
Table A-4 Eight-Thirds Powers of Numbers 409
Table A-5 Square Roots and Cube Roots of Numbers 410
Table A-6 Decimal Equivalents of Inches and Feet 411
Table A-7 Various Powers of Pipe Diameters 412
Table A-8 Areas of Circular Sections (Square Feet) 413
Table A-9 Areas of Circular Segments 414
Table A-10 Area, Wetted Perimeter and Hydraulic Radius of Partially Filled Circular Pipe 415
Table A-11 Headwater Depth for Circular Pipe Culverts with Inlet Control 416
Table A-12 Trigonometric Formulas 417
Table A-13 Properties of the Circle 418
Table A-14 Properties of Geometric Sections 419
Table A-15 Properties of Geometric Sections and Structural Shapes 425
Table A-16 Four Place Logarithm Tables 426
Table A-17 Frequently Used Conversion Factors 427
Table A-18 Metric Conversion of Diameter 430
Table A-19 Metric Conversion of Wall Thickness 430
APPENDIX B Marston/Spangler Design Procedure
Types of Installations 431
Trench 431
Positive Projecting Embankment 432
Negative Projecting Embankment 433
Selection of Bedding 435
Determination of Bedding Factor 436
Application of Factor of Safety 438
Selection of Pipe Strength 438
Example Problems 439
B-1 Trench Installation 439
B-2 Positive Projecting Embankment Installation 441
B-3 Negative Projecting Embankment Installation 443
B-4 Wide Trench Installation 445
B-5 Positive Projecting Embankment Installation Vertical Elliptical Pipe 447
B-6 Highway Live Load 449
APPENDIX B - TABLES AND FIGURES 451
GLOSSARY OF TERMS 533
CONDENSED BIBLIOGRAPHY 537

CHAPTER 1

INTRODUCTION

The design and construction of sewers and culverts are among the most important areas of public works engineering and, like all engineering projects, they involve various stages of development. The information presented in this manual does not cover all phases of the project, and the engineer may need to consult additional references for the data required to complete preliminary surveys.

This manual is a compilation of data on concrete pipe, and it was planned to provide all design information needed by the engineer when he begins to consider the type and shape of pipe to be used. All equations used in developing the figures and tables are shown along with limited supporting theory. A condensed bibliography of literature references is included to assist the engineer who wishes to further study the development of these equations.

Chapters have been arranged so the descriptive information can be easily followed into the tables and figures containing data which enable the engineer to select the required type and size concrete pipe without the lengthy computations previously required. All of these design aids are presently published in engineering textbooks or represent the computer analysis of involved equations. Supplemental data and information are included to assist in completing this important phase of the project, and illustrative example problems are presented in Chapters 2 through 4. A review of these examples will indicate the relative ease with which this manual can be used.

The revised Chapter 4 on Loads and Supporting Strengths incorporates the Standard Installations for concrete pipe bedding and design. The standard Installations are compatible with today's methods of installation and incorporate the latest research on concrete pipe. In 1996 the B, C, and D beddings, researched by Anson Marston and Merlin Spangler, were replaced in the AASHTO Bridge Specifications by the Standard Installations. A description of the B, C, and D beddings along with the appropriate design procedures are included in Appendix B of this manual to facilitate designs still using these beddings.

CHAPTER 2

HYDRAULICS OF SEWERS

The hydraulic design procedure for sewers requires:

1. Determination of Sewer System Type
2. Determination of Design Flow
3. Selection of Pipe Size
4. Determination of Flow Velocity

SANITARY SEWERS

DETERMINATION OF SEWER SYSTEM TYPE

Sanitary sewers are designed to carry domestic, commercial and industrial sewage with consideration given to possible infiltration of ground water. All types of flow are designed on the basis of having the flow characteristics of water.

DETERMINATION OF DESIGN FLOW

In designing sanitary sewers, average, peak and minimum flows are considered. Average flow is determined or selected, and a factor applied to arrive at the peak flow which is used for selecting pipe size. Minimum flows are used to determine if specified velocities can be maintained to prevent deposition of solids.

Average Flow. The average flow, usually expressed in gallons per day, is a hypothetical quantity which is derived from past data and experience. With adequate local historical records, the average rate of water consumption can be related to the average sewage flow from domestic, commercial and industrial sources. Without such records, information on probable average flows can be obtained from other sources such as state or national agencies. Requirements for minimum average flows are usually specified by local or state sanitary authorities or local, state and national public health agencies. Table 1 lists design criteria for domestic sewage flows for various municipalities. Commercial and industrial sewage flows are listed in Table 2. These tables were adapted from the "Design and Construction of Sanitary and Storm Sewers," published by American Society of Civil Engineers and Water Pollution Control Federation. To apply flow criteria in the design of a sewer system, it is necessary to determine present and future zoning, population densities and types of business and industry.

Peak Flow. The actual flow in a sanitary sewer is variable, and many studies have been made of hourly, daily and seasonal variations. Typical results of one study are shown in Figure I adapted from "Design and Construction of Sanitary and Storm Sewers," published by the American Society of Civil Engineers and Water Pollution Control Federation. Maximum and minimum daily flows are used in the design of treatment plants, but the sanitary sewer must carry the peak flow that will occur during its design life. This peak flow is defined as the mean
rate of the maximum flow occurring during a 15-minute period for any 12-month period and is determined by multiplying average daily flow by an appropriate factor. Estimates of this factor range from 4.0 to 5.5 for design populations of one thousand, to a factor of 1.5 to 2.0 for design population of one million. Tables 1 and 2 list minimum peak loads used by some municipalities as a basis for design.

Minimum Flow. A minimum velocity of 2 feet per second, when the pipe is flowing full or half full, will prevent deposition of solids. The design should be checked using the minimum flow to determine if this self-cleaning velocity is maintained.

SELECTION OF PIPE SIZE

After the design flows have been calculated, pipe size is selected using Manning's formula. The formula can be solved by selecting a pipe roughness coefficient, and assuming a pipe size and slope. However, this trial and error method is not necessary since nomographs, tables, graphs and computer programs provide a direct solution.

Manning's Formula. Manning's formula for selecting pipe size is:

$$
\begin{equation*}
\mathrm{Q}=\frac{1.486}{n} \mathrm{AR}^{2 / 3} \mathrm{~S}^{1 / 2} \tag{1}
\end{equation*}
$$

A constant $\mathrm{C}_{1}=\frac{1.486}{n} \mathrm{AR}^{2 / 3}$ which depends only on the geometry and characteristics of the pipe enables Manning's formula to be written as:

$$
\begin{equation*}
Q=C_{1} S^{1 / 2} \tag{2}
\end{equation*}
$$

Tables 3, 4, 5 and 6 list full flow values of C_{1} for circular pipe, elliptical pipe, arch pipe, and box sections. Table A-1 in the Appendix lists values of $S^{1 / 2}$.

Manning's " n " Value. The difference between laboratory test values of Manning's " n " and accepted design values is significant. Numerous tests by public and other agencies have established Manning's " n " laboratory values. However, these laboratory results were obtained utilizing clean water and straight pipe sections without bends, manholes, debris, or other obstructions. The laboratory results indicated the only differences were between smooth wall and rough wall pipes. Rough wall, or corrugated pipe, have relatively high " n " values which are approximately 2.5 to 3 times those of smooth wall pipe.

All smooth wall pipes, such as concrete and plastic, were found to have " n " values ranging between 0.009 and 0.010 , but, historically, engineers familiar with sewers have used 0.012 and 0.013 . This "design factor" of 20-30 percent takes into account the difference between laboratory testing and actual installed conditions. The use of such design factors is good engineering practice, and, to be consistent for all pipe materials, the applicable Manning's " " laboratory value should be increased a similar amount in order to arrive at design values.

Full Flow Graphs. Graphical solutions of Manning's formula are presented for circular pipe in Figures 2 through 5 and for horizontal elliptical pipe, vertical elliptical pipe, arch pipe and box sections in Figures 6 through 19. When flow, slope and roughness coefficient are known, pipe size and the resulting velocity for full flow can be determined.

Partially Full Flow Graphs. Velocity, hydraulic radius and quantity and area of flow vary with the depth of flow. These values are proportionate to full flow values and for any depth of flow are plotted for circular pipe, horizontal elliptical pipe, vertical elliptical pipe, arch pipe, and box sections in Figures 20 through 24.

DETERMINATION OF FLOW VELOCITY

Minimum Velocity. Slopes required to maintain a velocity of 2 feet per second under full flow conditions with various " n " values are listed in Table 7 for circular pipe. The slopes required to maintain velocities other than 2 feet per second under full flow conditions can be obtained by multiplying the tabulated values by one-fourth of the velocity squared or by solving Manning's formula using Figures 2 through 19.

Maximum Velocity. Maximum design velocities for clear effluent in concrete pipe can be very high. Unless governed by topography or other restrictions, pipe slopes should be set as flat as possible to reduce excavation costs and consequently velocities are held close to the minimum.

STORM SEWERS

DETERMINATION OF SEWER SYSTEM TYPE

Storm sewers are designed to carry precipitation runoff, surface waters and, in some instances, ground water. Storm water flow is analyzed on the basis of having the flow characteristics of water.

DETERMINATION OF DESIGN FLOW

The Rational Method is widely used for determining design flows in urban and small watersheds. The method assumes that the maximum rate of runoff for a given intensity occurs when the duration of the storm is such that all parts of the watershed are contributing to the runoff at the interception point. The formula used is an empirical equation that relates the quantity of runoff from a given area to the total rainfall falling at a uniform rate on the same area and is expressed as:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{Ci} \mathrm{~A} \tag{3}
\end{equation*}
$$

The runoff coefficient " C " and the drainage area " A " are both constant for a given area at a given time. Rainfall intensity " i ", however, is determined by using an appropriate storm frequency and duration which are selected on the basis of economics and engineering judgment. Storm sewers are designed on the basis that they will flow full during storms occurring at certain intervals. Storm frequency is selected through consideration of the size of drainage area, probable flooding, possible flood damage and projected development schedule for the area.

Runoff Coefficient. The runoff coefficient " C " is the ratio of the average rate of rainfall on an area to the maximum rate of runoff. Normally ranging between zero and unity, the runoff coefficient can exceed unity in those areas where rainfall occurs in conjunction with melting snow or ice. The soil characteristics, such as porosity, permeability and whether or not it is frozen are important considerations. Another factor to consider is ground cover, such as paved, grassy or wooded. In certain areas, the coefficient depends upon the slope of the terrain. Duration of rainfall and shape of area are also important factors in special instances. Average values for different areas are listed in Table 8.

Rainfall Intensity. Rainfall intensity " i " is the amount of rainfall measured in inches per hour that would be expected to occur during a storm of a certain duration. The storm frequency is the time in years in which a certain storm would be expected again and is determined statistically from available rainfall data.

Several sources, such as the U. S. Weather Bureau, have published tables and graphs for various areas of the country which show the relationship between rainfall intensity, storm duration and storm frequency. To illustrate these relationships, the subsequent figures and tables are presented as examples only, and specific design information is available for most areas. For a 2 -year frequency storm of 30 -minute duration, the expected rainfall intensities for the United States are plotted on the map in Figure 25. These intensities could be converted to storms of other durations and frequencies by using factors as listed in Tables 9 and 10 and an intensity-duration-frequency curve constructed as shown in Figure 26.

Time of Concentration. The time of concentration at any point in a sewer system is the time required for runoff from the most remote portion of the drainage area to reach that point. The most remote portion provides the longest time of concentration but is not necessarily the most distant point in the drainage area. Since a basic assumption of the Rational Method is that all portions of the area are contributing runoff, the time of concentration is used as the storm duration in calculating the intensity. The time of concentration consists of the time of flow from the most remote portion of the drainage area to the first inlet (called the inlet time) and the time of flow from the inlet through the system to the point under consideration (called the flow time). The inlet time is affected by the rainfall intensity, topography and ground conditions. Many designers use inlet times ranging from a minimum of 5 minutes for densely developed areas with closely spaced inlets to a maximum of 30 minutes for flat residential areas with widely spaced inlets. If the inlet time exceeds 30 minutes, then a detailed analysis is required because a very small inlet time will result in an overdesigned system while conversely for a very long inlet time the system will be underdesigned.

Runoff Area. The runoff area " A " is the drainage area in acres served by the storm sewer. This area can be accurately determined from topographic maps or field surveys.

SELECTION OF PIPE SIZE

Manning's Formula. Manning's formula for selecting pipe size is:

$$
\begin{equation*}
\mathrm{Q}=\frac{1.486}{n} \mathrm{AR}^{2 / 3} \mathrm{~S}^{1 / 2} \tag{1}
\end{equation*}
$$

A constant $\mathrm{C}_{1}=\frac{1.486}{n} \mathrm{AR}^{2 / 3}$ which depends only on the geometry and characteristics of the pipe enables Manning's formula to be written as:

$$
\begin{equation*}
Q=C_{1} S^{1 / 2} \tag{2}
\end{equation*}
$$

Tables 3, 4, 5 and 6 for circular pipe, elliptical pipe, arch pipe, and box sections with full flow and Table A-1 in the Appendix for values of C_{1} and $\mathrm{S}^{1 / 2}$ respectively are used to solve formula (2). Graphical solutions of Manning's formula (1) are presented in Figures 2 through 5 for circular pipe, and Figures 6 through 19 for horizontal elliptical pipe, vertical elliptical pipe, arch pipe and box sections under full flow conditions.

Partial flow problems can be solved with the proportionate relationships plotted in Figure 20 through 24.

Manning's " n " Value. The difference between laboratory test values of Manning's " n " and accepted design values is significant. Numerous tests by public and other agencies have established Manning's " n " laboratory values. However, these laboratory results were obtained utilizing clean water and straight pipe sections without bends, manholes, debris, or other obstructions. The laboratory results indicated the only differences were between smooth wall and rough wall pipes. Rough wall, or corrugated pipe, have relatively high " n " values which are approximately 2.5 to 3 times those of smooth wall pipe.

All smooth wall pipes, such as concrete and plastic, were found to have " n " values ranging between 0.009 and 0.010 , but, historically, engineers familiar with sewers have used 0.012 or 0.013 . This "design factor" of 20-30 percent takes into account the difference between laboratory testing and actual installed conditions. The use of such design factors is good engineering practice, and, to be consistent for all pipe materials, the applicable Manning's " n " laboratory value should be increased a similar amount in order to arrive at design values.

DETERMINATION OF FLOW VELOCITY

Minimum Velocity. The debris entering a storm sewer system will generally have a higher specific gravity than sanitary sewage, therefore a minimum velocity of 3 feet per second is usually specified. The pipe slopes required to maintain this velocity can be calculated from Table 7 or by solving Manning's formula using Figures 2 through 19.

Maximum Velocity. Tests have indicated that concrete pipe can carry clear water of extremely high velocities without eroding. Actual performance records of storm sewers on grades up to 45 percent and carrying high percentages of solids indicate that erosion is seldom a problem with concrete pipe.

EXAMPLE PROBLEMS
 EXAMPLE 2-1
 STORM SEWER FLOW

Given: The inside diameter of a circular concrete pipe storm sewer is 48 inches, " n " $=0.012$ and slope is 0.006 feet per foot.

Find: The full flow capacity, "Q".
Solution: The problem can be solved using Figure 4 or Table 3.
Figure 4 The slope for the sewer is 0.006 feet per foot or 0.60 feet per 100 feet. Find this slope on the horizontal axis. Proceed verticaly along the 0.60 line to the intersection of this line and the curve labelled 48 inches. Proceed horizontally to the vertical axis and read $Q=121$ cubic feet per second.

Table 3 Enter Table 3 under the column $n=0.012$ for a 48 -inch diameter pipe and find $\mathrm{C}_{1},=1556$. For $S=0.006$, find $\mathrm{S}^{1 / 2}=0.07746$ in Table A-1. Then $Q=1556 \times 0.07746$ or 121 cubic feet per second.

Answer: $Q=121$ cubic feet per second.

EXAMPLE 2-2
 REQUIRED SANITARY SEWER SIZE

Given: A concrete pipe sanitary sewer with " n " $=0.013$, slope of 0.6 percent and required full flow capacity of 110 cubic feet per second.

Find: Size of circular concrete pipe required.
Solution: This problem can be solved using Figure 5 or Table 3.
Figure 5 Find the intersection of a horizontal line through $Q=110$ cubic feet per second and a slope of 0.60 feet per 100 feet. The minimum size sewer is 48 inches.

Table 3 For $\mathrm{Q}=110$ cubic feet per second and $\mathrm{S}^{1 / 2}=0.07746$
$C_{1}=\frac{Q}{S^{1 / 2}}=\frac{110}{0.07746}=1420$
In the table, 1436 is the closest value of C_{1}, equal to or larger than 1420 , so the minimum size sewer is 48 inches.

Answer: A 48-inch diameter circular pipe would have more than adequate capacity.

EXAMPLE 2-3 STORM SEWER MINIMUM SLOPE

Given: A 48-inch diameter circular concrete pipe storm sewer, " n " $=0.012$ and flowing one-third full.

Find: \quad Slope required to maintain a minimum velocity of 3 feet per second.
Solution: Enter Figure 20 on the vertical scale at Depth of Flow $=0.33$ and project a horizontal line to the curved line representing velocity. On the horizontal scale directly beneath the point of intersection read a value of 0.81 which represents the proportional value to full flow.

$$
\begin{aligned}
\frac{\mathrm{V}}{\mathrm{~V}_{\text {full }}} & =0.81 \\
\mathrm{~V}_{\text {full }} & =\frac{\mathrm{V}}{0.81} \\
& =\frac{3}{0.81} \\
& =3.7
\end{aligned}
$$

Enter Figure 4 and at the intersection of the line representing 48 -inch diameter and the interpolated velocity line of 3.7 read a slope of 0.088 percent on the horizontal scale.

Answer: The slope required to maintain a minimum velocity of 3 feet per second at one-third full is 0.088 percent.

EXAMPLE 2-4
SANITARY SEWER DESIGN
General: A multi-family housing project is being developed on 350 acres of rolling to flat ground. Zoning regulations establish a population density of 30 persons per acre. The state Department of Health specifies 100 gallons per capita per day as the average and 500 gallons per capita per day as the peak domestic sewage flow, and an infiltration allowance of 500 gallons per acre per day.

Circular concrete pipe will be used, " n " $=0.013$, designed to flow full at peak load with a minimum velocity of 2 feet per second at one-third peak flow. Maximum spacing between manholes will be 400 feet.

Given: Population Density $=30$ persons per acre
Average Flow $\quad=100$ gallons per capita per day
Peak Flow $=500$ gallons per capita per day
Infiltration $=500$ gallons per acre per day
Manning's Roughness $=0.013$ (See discussion of Manning's Coefficient " n " Value)
Minimum Velocity $=2$ feet per second @ $1 / 3$ peak flow
Find: Design the final 400 feet of pipe between manhole Nos. 20 and 21, which serves 58 acres in addition to carrying the load from the previous pipe which serves the remaining 292 acres.

Solution: 1. Design Flow

Population-Manhole 1 to $20=30 \times 292=8760$
Population-Manhole 20 to $21=30 \times 58=1740$
Total population 10,500 persons
Peak flow-Manhole
1 to $20=500 \times 8760=4,380,000$ gallons per day
Infiltration-Manhole
1 to $20-500 \times 292=146,000$ gallons per day
Peak flow-Manhole
20 to $21=500 \times 1740=870,000$ gallons per day
Infiltration-Manhole 20 to $21=500 \times 58=29,000$ gallons per day

Total Peak flow $=5,425,000$ gallons per day use $5,425,000$ gallons per day or 8.4 cubic feet per second

2. Selection of Pipe Size

In designing the sewer system, selection of pipe begins at the first manhole and proceeds downstream. The section of pipe preceding the final section is an 18 -inch diameter, with slope $=0.0045$ feet per foot. Therefore, for the final section the same pipe size will be checked and used unless it has inadequate capacity, excessive slope or inadequate velocity.

Enter Figure 5, from Q = 8.4 cubic feet per second on the vertical scale project a horizontal line to the 18 -inch diameter pipe, read velocity $=4.7$ feet per second.

From the intersection, project a vertical line to the horizontal scale, read slope $=0.63$ feet per 100 feet.

3. Partial Flow

Enter Figure 20, from Proportion of Value for Full Flow $=0.33$ on the horizontal scale project a line vertically to "flow" curve, from intersection project a line horizontally to "velocity" curve, from intersection project a line vertically to horizontal scale, read Proportion of Value for Full Flow - 0.83.

Velocity at minimum flow $=0.83 \times 4.7=3.9$ feet per second.
Answer: Use 18-inch diameter concrete pipe with slope of 0.0063 feet per foot.

The preceding computations are summarized in the following tabular forms, Illustrations 2.1 and 2.2.

Illustration 2.1 - Population and Flow

Manhole No.	DRAINAGE AREA			PEAK-FLOW - MGD					Cum Flow cfs.
	Zoning	Acres	Ultimate Population	Domestic	Industrial	Infiltration	Total	Cum. Total	
19	From Preceeding Computations							4.53	7.0
20	Multifamily	58	1740	. 087	-	0.03	0.90	5.43	8.4
21	Trunk	er Inte	eptor Manh						

Illustration 2.2-Sanitary Sewer Design Data

		Flow cfs	SEWER					ManholeFlow-line Elevations	
No.	Sta.		Length ft.	$\begin{aligned} & \text { Slope } \\ & \text { ft/ft } \end{aligned}$	$\begin{gathered} \text { Pipe } \\ \text { Dia. in } \end{gathered}$	Velocity fps	$\begin{aligned} & \text { Fall } \\ & \mathrm{ft} . \end{aligned}$	In	Out
19	46	7.0							389.51
20	50	8.4	400	0.0045	18	4.0	1.80	387.71	387.71
	54		400	0.0063	18	4.7	2.52	385.19	

EXAMPLE 2-5
STORM SEWER DESIGN
General: A portion of the storm sewer system for the multi-family development is to serve a drainage area of about 30 acres. The state Department of Health specifies a 10-inch diameter minimum pipe size.

Circular concrete pipe will be used,"n" $=0.011$, with a minimum velocity of 3 feet per second when flowing full. Minimum time of concentration is 10 minutes with a maximum spacing between manholes of 400 feet.

Given:

Drainage Area	A $=30$ acres (total)
Runoff Coefficient	$\mathrm{C}=0.40$
Rainfall Intensity	i as shown in Figure 26
Roughness Coefficient	$\mathrm{n}=$(n " Value) (See discussion of Manning's Velocity
	$\mathrm{V}=$3.0 feet per second (minimum at full flow)

Find: Design of the storm system as shown in Illustration 2.3, "Plan for Storm Sewer Example," adapted from "Design and Construction of Concrete Sewers," published by the Portland Cement Association.

Solution: The hydraulic properties of the storm sewer will be entered as they are determined on the example form Illustration 2.4, "Computation Sheet for Hydraulic Properties of Storm Sewer." The design of the system begins at the upper manhole and proceeds downstream.

The areas contributing to each manhole are determined, entered incrementally in column 4 , and as cumulative totals in column 5 . The initial inlet time of 10 minutes minimum is entered in column 6 , line 1, and from Figure 26 the intensity is found to be 4.2 inches per hour which is entered in column 8 , line 1 . Solving the Rational formula, $Q=1.68$ cubic feet per second is entered in column 9 , line 1 . Enter Figure 3 , for $\mathrm{V}=3$ feet per second and $\mathrm{Q}=1.68$ cubic feet per second, the 10 -inch diameter pipe requires a slope $=0.39$ feet per 100 feet. Columns $10,12,13,14,15$ and 16 , line 1 , are now filled in. The flow time from manhole 7 to 6 is found by dividing the length (300 feet) between manholes by the velocity of flow (3 feet per second) and converting the answers to minutes (1.7 minutes) which is entered in column 7 , line 1 . This time increment is added to the 10-minute time of concentration for manhole 7 to arrive at 11.7 minutes time of concentration for manhole 6 which is entered in column 6, line 2.
From Figure 26, the intensity is found to be 4.0 inches per hour for a time of concentration of 11.7 minutes which is entered in column 8 , line 2. The procedure outlined in the preceding paragraph is repeated for each section of sewer as shown in the table.

[^0]
Illustration 2.3-Plan for Storm Sewer Example

Illustration 2.4-Computation Sheet for Hydraulic Properties of Storm Sewer

EXAMPLE 2-6 SANITARY SEWER DESIGN

Given: A concrete box section sanitary sewer with " n " $=0.013$, slope of 1.0% and required full flow capacity of 250 cubic feet per second.

Find: Size of concrete box section required for full flow.

Solution: This problem can be solved using Figure 19 or Table 6.
Figure 19 Find the intersection of a horizontal line through $Q=250$ cubic feet per second and a slope of 1.0 feet per 100 feet. The minimum size box section is either a 6 foot span by 4 foot rise or a 5 foot span by 5 foot rise.

Table 6 For $Q=250$ cubic feet per second and $S^{1 / 2}=0.100$

$$
C_{1}=\frac{Q}{S^{1 / 2}}=\frac{250}{0.100}=2,500
$$

In Table 6, under the column headed $n=0.013,3,338$ is the first value of C_{1}, equal to or larger than 2,500 , therefore a box section with a 5 foot span X a 5 foot rise is adequate. Looking further in the same column, a box section with a 6 foot span and a 4 foot rise is found to have a C_{1}, value of 3,096 , therefore a 6×4 box section is also adequate.

Answer: Either a 5 foot $X 5$ foot or a 6 foot $X 4$ foot box section would have a full flow capacity equal to or greater than $Q=250$ cubic feet per second.

CHAPTER 3

HYDRAULICS OF CULVERTS

The hydraulic design procedure for culverts requires:

1. Determination of Design Flow
2. Selection of Culvert Size
3. Determination of Outlet Velocity

DETERMINATION OF DESIGN FLOW

The United States Geological Survey has developed a nationwide series of water-supply papers titled the "Magnitude and Frequency of Floods in the United States." These reports contain tables of maximum known floods and charts for estimating the probable magnitude of floods of frequencies ranging from 1.1 to 50 years. Table 11 indicates the Geological Survey regions, USGS district and principal field offices and the applicable water-supply paper numbers. Most states have adapted and consolidated those parts of the water-supply papers which pertain to specific hydrologic areas within the particular state. The hydrologic design procedures developed by the various states enable quick and accurate determination of design flow. It is recommended that the culvert design flow be determined by methods based on USGS data.

If USGS data are not available for a particular culvert location, flow quantities may be determined by the Rational Method or by statistical methods using records of flow and runoff. An example of the latter method is a nomograph developed by California and shown in Figure 27.

FACTORS AFFECTING CULVERT DISCHARGE

Factors affecting culvert discharge are depicted on the culvert cross section shown in Illustration 3.1 and are used in determining the type of discharge control.

Inlet Control. The control section is located at or near the culvert entrance, and, for any given shape and size of culvert, the discharge is dependent only on the inlet geometry and headwater depth. Inlet control will exist as long as water can flow through the barrel of the culvert at a greater rate than water can enter the inlet. Since the control section is at the inlet, the capacity is not affected by any hydraulic factors beyond the culvert entrance such as slope, length or surface roughness. Culverts operating under inlet control will always flow partially full.

Illustration 3.1 - Factors Affecting Culvert Discharge

D = Inside diameter for circular pipe
HW = Headwater depth at culvert entrance
$\mathrm{L}=$ Length of culvert
$\mathrm{n}=$ Surface roughness of the pipe wall, usually expressed in terms of Manning's n
So = Slope of the culvert pipe
TW = Tailwater depth at culvert outlet

Outlet Control. The control section is located at or near the culvert outlet and for any given shape and size of culvert, the discharge is dependent on all of the hydraulic factors upstream from the outlet such as shape, slope, length, surface roughness, tailwater depth, headwater depth and inlet geometry. Outlet control will exist as long as water can enter the culvert at a greater rate than water can flow through it. Culverts operating under outlet control can flow either full or partially full.

Critical Depth. Critical flow occurs when the sum of the kinetic energy (velocity head) plus the potential energy (static or depth head equal to the depth of the flow) for a given discharge is at a minimum. Conversely, the discharge through a pipe with a given total energy head will be maximum at critical flow. The depth of the flow at this point is defined as critical depth, and the slope required to produce the flow is defined as critical slope. Capacity of a culvert with an unsubmerged outlet will be established at the point where critical flow occurs. Since under inlet control, the discharge of the culvert is not reduced by as many hydraulic factors as under outlet control, for a given energy head, a culvert will have maximum possible discharge if it is operating at critical flow with inlet control. The energy head at the inlet control section is approximately equal to the head at the inlet minus entrance losses. Discharge is not limited by culvert roughness or outlet conditions but is dependent only on the shape and size of the culvert entrance. Although the discharge of a culvert operating with inlet control is not related to the pipe roughness, the roughness does determine the minimum slope (critical slope) at which inlet control will occur. Pipe with a smooth interior can be installed on a very flat slope and still have inlet control. Pipe with a rough interior must be installed on a much steeper slope to have inlet control. Charts of critical depth for various pipe and box section sizes and flows are shown in Figures 28 through 32.

SELECTION OF CULVERT SIZE

The many hydraulic design procedures available for determining the required size of a culvert vary from empirical formulas to a comprehensive mathematical analysis. Most empirical formulas, while easy to use, do not lend themselves to proper evaluation of all the factors that affect the flow of water through a culvert. The mathematical solution, while giving precise results, is time consuming. A systematic and simple design procedure for the proper selection of a culvert size is provided by Hydraulic Engineering Circular No. 5, "Hydraulic Charts for the Selection of Highway Culverts" and No. 10, "Capacity Charts for the Hydraulic Design of Highway Culverts," developed by the Bureau of Public Roads. The procedure when selecting a culvert is to determine the headwater depth from the charts for both assumed inlet and outlet controls. The solution which yields the higher headwater depth indicates the governing control. When this procedure is followed, Inlet Control Nomographs, Figures 33 through 37, and Outlet Control Nomographs, Figures 38 through 41, are used.

An alternative and simpler method is to use the Culvert Capacity Charts, Figures 42 through 145. These charts are based on the data given in Circular No. 5 and enable the hydraulic solution to be obtained directly without using the double solution for both inlet and outlet control required when the nomographs are used.

Culvert Capacity Chart Procedure. The Culvert Capacity Charts are a convenient tool for selection of pipe sizes when the culvert is installed with conditions as indicated on the charts. The nomographs must be used for other shapes, roughness coefficients, inlet conditions or submerged outlets.

List Design Data
A. Design discharge Q, in cubic feet per second, with average return period (i.e., Q25 or Q50, etc.).
B. Approximate length L of culvert, in feet.
C. Slope of culvert.
D. Allowable headwater depth, in feet, which is the vertical distance from the culvert invert (flow line) at the entrance to the water surface elevation permissible in the headwater pool or approach channel upstream from the culvert.
E. Mean and maximum flood velocities in natural stream.
F. Type of culvert for first trial selection, including barrel cross sectional shape and entrance type.

Select Culvert Size

A. Select the appropriate capacity chart, Figures 42 to 145, for the culvert size approximately equal to the allowable headwater depth divided by 2.0.
B. Project a vertical line from the design discharge Q to the inlet control curve. From this intersection project a line horizontally and read the headwater depth on the vertical scale. If this headwater depth is more than the allowable, try the next larger size pipe. If the headwater depth is
less than the allowable, check the outlet control curves.
C. Extend the vertical line from the design discharge to the outlet control curve representing the length of the culvert. From this intersection project a line horizontally and read the headwater depth plus SoL on the vertical scale. Subtract SoL from the outlet control value to obtain the headwater depth. If the headwater depth is more than the allowable, try the next larger size pipe. If the headwater depth is less than the allowable, check the next smaller pipe size following the same procedure for both inlet control and outlet control.
D. Compare the headwater depths for inlet and outlet control. The higher headwater depth indicates the governing control.

Determine Outlet Velocity

A. If outlet control governs, the outlet velocity equals the flow quantity divided by the flow cross sectional area at the outlet. Depending upon the tailwater conditions, this flow area will be between that corresponding to critical depth and the full area of the pipe. If the outlet is not submerged, it is usually sufficiently accurate to calculate the flow area based on a depth of flow equal to the average of the critical depth and the vertical height of the pipe.
B. If inlet control governs, the outlet velocity may be approximated by Manning's formula using Figures 2 through 19 for full flow values and Figures 20 through 24 for partial flow values.

Record Selection

Record final selection of culvert with size, type, required headwater and outlet velocity.

Nomograph Procedure. The nomograph procedure is used for selection of culverts with entrance conditions other than projecting or for submerged outlets.

List Design Data

A. Design discharge Q, in cubic feet per second, with average return period (i.e., Q25 or Q,50, etc.).
B. Approximate length L of culvert, in feet.
C. Slope of culvert.
D. Allowable headwater depth, in feet, which is the vertical distance from the culvert invert (flow line) at the entrance to the water surface elevation permissible in the headwater pool or approach channel upstream from the culvert.
E. Mean and maximum flood velocities in natural stream.
F. Type of culvert for first trial selection, including barrel cross sectional shape and entrance type.

Select Trial Culvert Size

Select a trial culvert with a rise or diameter equal to the allowable headwater divided by 2.0.

Find Headwater Depth for Trial Culvert

A. Inlet Control
(1) Given Q, size and type of culvert, use appropriate inlet control nomograph Figures 33 through 37 to find headwater depth:
(a) Connect with a straightedge the given culvert diameter or height (D) and the discharge Q; mark intersection of straightedge on HW/D scale marked (1).
(b) HW/D scale marked (1) represents entrance type used, read HW/D on scale (1). If another of the three entrance types listed on the nomograph is used, extend the point of intersection in (a) horizontally to scale (2) or (3) and read HW/D.
(c) Compute HW by multiplying HW/D by D.
(2) If HW is greater or less than allowable, try another trial size until HW is acceptable for inlet control.

B. Outlet Control

(1) Given Q, size and type of culvert and estimated depth of tailwater TW, in feet, above the invert at the outlet for the design flood condition in the outlet channel:
(a) Locate appropriate outlet control nomograph (Figures 38 through 41) for type of culvert selected. Find ke, for entrance type from Table 12.
(b) Begin nomograph solution by locating starting point on length scale for proper ke.
(c) Using a straightedge, connect point on length scale to size of culvert barrel and mark the point of crossing on the "turning line."
(d) Pivot the straightedge on this point on the turning line and connect given discharge rate. Read head in feet on the head (H) scale.
(2) For tailwater TW elevation equal to or greater than the top of the culvert at the outlet set ho equal to TW and find HW by the following equation:

$$
\begin{equation*}
H W=H+h_{0}-S_{\circ} L \tag{3}
\end{equation*}
$$

(3) For tailwater TW elevations less than the top of the culvert at the outlet, use $h_{0}=\frac{d_{c}+D}{2}$ or TW, whichever is the greater, where d_{c}, the critical depth in feet is determined from the appropriate critical depth chart (Figures 28 through 32).
C. Compare the headwaters found in paragraphs A (Inlet Control) and B (Outlet Control). The higher headwater governs and indicates the flow control existing under the given conditions for the trial size selected.
D. If outlet control governs and the HW is higher than acceptable, select a larger trial size and find HW as instructed under paragraph B. Inlet control need not be checked, if the smaller size was satisfactory for this control as determined under paragraph A .

Try Another Culvert

Try a culvert of another size or shape and repeat the above procedure.

Determine Outlet Velocity

A. If outlet control governs, the outlet velocity equals the flow quantity divided by the flow cross sectional area at the outlet. Depending upon the tailwater conditions, this flow area will be between that corresponding to critical depth and the full area of the pipe. If the outlet is not submerged, it is sufficiently accurate to calculate flow area based on a depth of flow equal to the average of the critical depth and vertical height of the pipe.
B. If inlet control governs, the outlet velocity may be approximated by Manning's formula using Figures 2 through 19 for full flow values and Figures 20 through 24 for partial flow values.

Record Selection

Record final selection of culvert with size, type, required headwater and outlet velocity.

EXAMPLE PROBLEMS EXAMPLE 3 -I CULVERT CAPACITY CHART PROCEDURE

List Design Data

A. Q25 $=180$ cubic feet per second

Q50 $=225$ cubic feet per second
B. $L=200$ feet
C. $S_{0}=0.01$ feet per foot
D. Allowable HW $=10$ feet for 25 and 50 -year storms
E. TW $=3.5$ feet for 25 -year storm TW $=4.0$ feet for 50 -year storm
F. Circular concrete culvert with a projecting entrance, $n=0.012$

Select Culvert Size
A. Try $D=\frac{H W}{2.0}=\frac{10}{2.0}=5$ feet or 60 inch diameter as first trial size.
B. In Figure 54, project a vertical line from $Q=180$ cubic feet per second
to the inlet control curve and read horizontally $\mathrm{HW}=6.2$. Since $\mathrm{HW}=$ 6.2 is considerably less than the allowable try a 54 inch diameter. In Figure 53, project a vertical line from $Q=180$ cubic feet per second to the inlet control curve and read horizontally $\mathrm{HW}=7.2$ feet.
In Figure 53, project a vertical line from $Q=225$ cubic feet per second to the inlet control curve and read horizontally $\mathrm{HW}=9.6$ feet.
C. In Figure 53, extend the vertical line from $Q=180$ cubic feet per second to the $\mathrm{L}=200$ feet outlet control curve and read horizontally HW + SoL $=8.0$ feet.
In Figure 53, extend the vertical line from $Q=225$ cubic feet per second to the $\mathrm{L}=200$ feet outlet control curve and read horizontally HW + SoL = 10.2 feet. SoL $=0.01$ X $200=2.0$ feet.
Therefore HW = 8.0-2.0 = 6.0 feet for 25 -year storm $H W=10.2-2.0=8.2$ feet for 50 -year storm
D. Since the calculated HW for inlet control exceeds the calculated HW for outlet control in both cases, inlet control governs for both the 25 and 50 -year storm flows.

Determine Outlet Velocity

B. Enter Figure 4 on the horizontal scale at a pipe slope of 0.01 feet per foot (1.0 feet per 100 feet). Project a vertical line to the line representing 54 -inch pipe diameter. Read a full flow value of 210 cubic feet per second on the vertical scale and a full flow velocity of 13.5 feet per second. Calculate $\frac{\mathrm{Q}_{50}}{\mathrm{Q}_{\text {Full }}}=\frac{225}{210}=1.07$. Enter Figure 20 at 1.07 on the horizontal scale and project a vertical line to the "flow" curve. At this intersection project a horizontal line to the "velocity" curve. Directly beneath this intersection read $\frac{V_{50}}{V_{\text {Ful }}}$ $13.5=15.1$ feet per second.

Record Selection

Use a 54-inch diameter concrete pipe with allowable HW $=10.0$ feet and actual HW $=7.2$ and 9.6 feet respectively for the 25 and 50 year storm flows, and a maximum outlet velocity of 15.1 feet per second.

EXAMPLE 3-2
 NOMOGRAPH PROCEDURE

List Design Data

A. Q25 $=180$ cubic feet per second
$Q_{50}=225$ cubic feet per second
B. $L=200$ feet
C. $S_{o}=0.01$ feet per foot
D. Allowable HW = 10 feet for 25 and 50 -year storms
E. TW $=3.5$ feet for 25 -year storm TW = 4.0 feet for 50-year storm
F. Circular concrete culvert with a projecting entrance, $n=0.012$

Select Trial Culvert Size
$D=\frac{H W}{2.0}=\frac{10}{2.0}=5$ feet

Determine Trial Culvert Headwater Depth

A. Inlet Control
(1) For $Q=180$ cubic feet per second and $D=60$ inches, Figure 33 indicates HW/D $=1.25$. Therefore HW $=1.25 \times 5=6.2$ feet.
(2) Since HW $=6.2$ feet is considerably less than allowable try a 54inch pipe.
For $Q=180$ cubic feet per second and $D=54$ inches, Figure 33 indicates HW/D = 1.6. Therefore HW = 1.6 X $4.5=7.2$ feet. For $Q=225$ cubic feet per second and $D=54$ inches, Figure 33 indicates HW/D $=2.14$. Therefore HW 2.14 X $4.5=9.6$ feet.
B. Outlet Control
(I) $\mathrm{TW}=3.5$ and 4.0 feet is less than $\mathrm{D}=4.5$ feet.
(3) Table 12, $\mathrm{ke},=0.2$.

For $D=54$ inches, $Q=180$ cubic feet per second, Figure 28
indicates $\mathrm{d}_{\mathrm{c}}, 3.9$ feet which is less than $\mathrm{D}=4.5$ feet. Calculate
$h_{0}=\frac{\mathrm{d}_{\mathrm{c}+} \mathrm{D}}{2}=\frac{3.9+4.5}{2}=4.2$ feet .
For $D=54$ inches, $Q=180$ cubic feet per second, $\mathrm{ke} .=0.2$ and $L=$ 200 feet.
Figure 38 indicates $\mathrm{H}=3.8$ feet.
Therefore HW = 3.8 + 4.2-(0.01 X 200) $=6.0$ feet (Equation 3).
For $D=54$ inches, $Q=225$ cubic feet per second, Figure 28
indicates $\mathrm{d}_{\mathrm{c}},=4.2$ feet which is less than $\mathrm{D}=4.5$ feet. Calculate $h_{0}=\frac{\mathrm{d}_{\mathrm{c}+} \mathrm{D}}{2}=\frac{4.2+4.5}{2}=4.3$ feet.

For $\mathrm{D}=54$ inches, $\mathrm{Q}=225$ cubic feet per second, $\mathrm{ke},=0.2$ and $\mathrm{L}=$ 200 feet.
Figure 38 indicates $\mathrm{H}=5.9$ feet.
Therefore HW $=5.9+4.3-(0.01 \times 200)=8.2$ feet (Equation 3).
C. Inlet control governs for both the 25 and 50 -year design flows.

Try Another Culvert

A 48-inch culvert would be sufficient for the 25 -year storm flow but for the 50 -year storm flow the HW would be greater than the allowable.

Determine Outlet Velocity

B. Enter Figure 4 on the horizontal scale at a pipe slope of 0.01 feet per foot (1.0 feet per 100 feet). Project a vertical line to the line representing 54 -inch pipe diameter. Read a full flow value of 210 cubic feet per second on the vertical scale and a full flow velocity of 13.5 feet per second. Calculate
$\frac{Q_{50}}{Q_{\text {Full }}}=\frac{225}{210}=1.07$.
Enter Figure 20 at 1.07 on the horizontal scale and project a vertical line to the "flow" curve. At this intersection project a horizontal line to the "velocity" curve. Directly beneath this intersection read
V_{50}
$V_{\text {Full }}=1.12$ on the horizontal scale. Calculate $\mathrm{V}_{50}=1.12 \mathrm{~V}_{\text {Full }}=1.12 \mathrm{X}$ $13.5=15.1$ feet per second.

Record Selection

Use a 54-inch diameter concrete pipe with allowable HW $=10.0$ feet and actual HW $=7.2$ and 9.6 feet respectively for the 25 and 50 -year storm flows, and a maximum outlet velocity of 15.1 feet per second.

EXAMPLE 3-3
CULVERT DESIGN

General: A highway is to be constructed on embankment over a creek draining 400 acres. The embankment will be 41 -feet high with $2: 1$ side slopes and a top width of 80 feet. Hydraulic design criteria requires a circular concrete pipe, $n=0.012$, with the inlet projecting from the fill. To prevent flooding of upstream properties, the allowable headwater is 10.0 feet, and the design storm frequency is 25 years.

Given: Drainage Area
Roughness Coefficient

$$
\begin{aligned}
& \text { A }=400 \text { acres } \\
& n=0.012 \text { (See discussion of Manning's } \\
& \text { " } n \text { " Value) } \\
& H W=10 \text { feet (allowable) }
\end{aligned}
$$

Find: The required culvert size.

Solution: 1. Design Flow

The design flow for 400 acres should be obtained using USGS data. Rather than present an analysis for a specific area, the design flow will be assumed as 250 cubic feet per second for a 25-year storm.
2. Selection of Culvert Size

The culvert will be set on the natural creek bed which has a one percent slope. A cross sectional sketch of the culvert and embankment indicates a culvert length of about 250 feet. No flooding of the outlet is expected.
Trial diameter HW/D $=2.0$ feet $\quad D=\frac{10}{2}=5$ feet.
Enter Figure 54, from Q = 250 cubic feet per second project a line vertically to the inlet control curve, read HW $=8.8$ feet on the vertical scale. Extend the vertical line to the outlet control curve for $L=250$ feet, read $H+$ SoL $=9.6$ on the vertical scale. $S \circ L=$ $250 \times 0.01=2.5$ feet. Therefore, outlet control HW = 9.6-2.5 = 7.1 feet and inlet control governs.

Enter Figure 53, from Q = 250 cubic feet per second project a line vertically to the inlet control curve, read HW $=10.8$ feet which is greater than the allowable.

3. Determine Outlet Velocity

For inlet control, the outlet velocity is determined from Manning's formula. Entering Figure 4, a 60 -inch diameter pipe with $\mathrm{S}_{0}=$ 1.0 foot per 100 feet will have a velocity $=14.1$ feet per second flowing full and a capacity of 280 cubic feet per second.
Enter Figure 20 with a Proportion of Value for Full Flow = 250
280 or 0.9, read Depth of Flow $=0.74$ and
Velocity Proportion $=1.13$. Therefore, outlet velocity $=1.13 \mathrm{X}$ $14.1=15.9$ feet per second.

Answer: A 60-inch diameter circular pipe would be required.

> EXAMPLE 3-4
> CULVERT DESIGN

General: An 800 -foot long box culvert with an $n=0.012$ is to be installed on a 0.5% slope. Because utility lines are to be installed in the embankment above the box culvert, the maximum rise is limited to 8 feet. The box section is required to carry a maximum flow of

1,000 cubic feet per second with an allowable headwater depth of 15 feet.

List Design Data

A. $Q=1,000$ cubic feet per second
B. $L=800$ feet
C. $S_{o}=0.5 \%=0.005$ feet per foot
D. Allowable HW = 15 feet
E. Box culvert with projecting entrance and $n=0.012$

Select Culvert Size

Inspecting the box section culvert capacity charts for boxes with rise equal to or less than 8 feet, it is found that a 8×8 foot and a 9×7 foot box section will all discharge 1,000 cubic feet per second with a headwater depth equal to or less than 15 feet under inlet control. Therefore, each of the two sizes will be investigated.

Determine Headwater Depth

8 X 8 foot Box Section
A. Inlet Control

Enter Figure 124, from $Q=1,000$ project a vertical line to the inlet control curve. Project horizontally to the vertical scale and read a headwater depth of 14.8 feet for inlet control.
B. Outlet Control

Continue vertical projection from $\mathrm{Q}=1,000$ to the outlet control curve for $L=800$ feet. Project horizontally to vertical scale and read a value for $(\mathrm{HW}+\mathrm{SoL})=17.5$ feet. Then HW = 17.5-SoL = $17.5-(0.005 \mathrm{X}$ $800)=13.5$ feet for outlet control.

Therefore inlet control governs.
9×7 - foot Box Section
Entering Figure 127, and proceeding in a similar manner, find a headwater depth of 14.7 for inlet control and 13.1 feet for outlet control with inlet control governing.

Determine Outlet Velocity

Entering Table 6, find area and C_{1}, value for each size box section and Table A-1 find value of $\mathrm{S}^{1 / 2}$ for $\mathrm{S}_{\mathrm{o}},=0.005$, then Qtull $=\mathrm{C}_{1} \mathrm{~S}^{1 / 2}$.

For 8 X 8 - foot Box Section
Quull $=12700 \times 0.07071=898$ cubic feet per second
$V_{\text {full }}=\mathrm{Q} / \mathrm{A}=899 \div 63.11=14.2$ feet per second.

Then
$\frac{Q_{\text {partial }}}{Q_{\text {full }}}=\frac{1000}{899}=1.11$.

Entering Figure 24.9 on the horizontal scale at 1.11, project a vertical line to intersect the flow curve. From this point, proceed horizontally to the right and intersect the velocity curve. From this point drop vertically to the horizontal scale and read a value of 1.18 for $\mathrm{V}_{\text {partia/ }} /$ Vull ratio.

Then
$V_{\text {partial }}=1.18$ X $14.2=16.8$ feet per second
Proceeding in a similar manner for the 9×7 foot box section, Figure 24.7 , find a $\mathrm{V}_{\text {partial }}=16.9$ feet per second.

Record Selection

Use either a 8 X 8 foot box section with an actual HW of 14.8 feet and an outlet velocity of 16.8 feet per second or a 9×7 foot box section with an actual HW of 14.7 feet and an outlet velocity of 16.9 feet per second.

CHAPTER 4

LOADS AND SUPPORTING STRENGTHS

The design procedure for the selection of pipe strength requires:
I. Determination of Earth Load
2. Determination of Live Load
3. Selection of Bedding
4. Determination of Bedding Factor
5. Application of Factor of Safety
6. Selection of Pipe Strength

TYPES OF INSTALLATIONS

The earth load transmitted to a pipe is largely dependent on the type of installation. Three common types are Trench, Positive Projecting Embankment, and Negative Projecting Embankment. Pipelines are also installed by jacking or tunneling methods where deep installations are necessary or where conventional open excavation and backfill methods may not be feasible. The essential features of each of these installations are shown in Illustration 4.1.

Trench. This type of installation is normally used in the construction of sewers, drains and water mains. The pipe is installed in a relatively narrow trench excavated in undisturbed soil and then covered with backfill extending to the ground surface.

Positive Projecting Embankment. This type of installation is normally used when the culvert is installed in a relatively flat stream bed or drainage path. The pipe is installed on the original ground or compacted fill and then covered by an earth fill or embankment.

Negative Projecting Embankment. This type of installation is normally used when the culvert is installed in a relatively narrow and deep stream bed or drainage path. The pipe is installed in a shallow trench of such depth that the top of the pipe is below the natural ground surface or compacted fill and then covered with an earth fill or embankment which extends above the original ground level.

Jacked or Tunneled. This type of installation is used where surface conditions make it difficult to install the pipe by conventional open excavation and backfill methods, or where it is necessary to install the pipe under an existing embankment. A jacking pit is dug and the pipe is advanced horizontally underground.

Illustration 4.1 Essential Features of Types of Installations

GROUND SURFACE

Trench

TOP OF EMBANKMENT

Negative Projecting
Embankment

TOP OF EMBANKMENT

GROUND SURFACE

H

Jacked or Tunneled

BACKGROUND

The classic theory of earth loads on buried concrete pipe, published in 1930 by A. Marston, was developed for trench and embankment conditions.

In later work published in 1933, M. G. Spangler presented three bedding configurations and the concept of a bedding factor to relate the supporting strength of buried pipe to the strength obtained in a three-edge bearing test.

Spangler's theory proposed that the bedding factor for a particular pipeline and, consequently, the supporting strength of the buried pipe, is dependent on two installation characteristics:

1. Width and quality of contact between the pipe and bedding.
2. Magnitude of lateral pressure and the portion of the vertical height of the pipe over which it acts.
For the embankment condition, Spangler developed a general equation for the bedding factor, which partially included the effects of lateral pressure. For the trench condition, Spangler established conservative fixed bedding factors, which neglected the effects of lateral pressure, for each of the three beddings. This separate development of bedding factors for trench and embankment conditions resulted in the belief that lateral pressure becomes effective only at trench widths equal to or greater than the transition width. Such an assumption is not compatible with current engineering concepts and construction methods. It is reasonable to expect some lateral pressure to be effective at trench widths less than transition widths. Although conservative designs based on the work of Marston and Spangler have been developed and installed successfully for years, the design concepts have their limitations when applied to real world installations.

The limitations include:

- Loads considered acting only at the top of the pipe.
- Axial thrust not considered.
- Bedding width of test installations less than width designated in his bedding configurations.
- Standard beddings developed to fit assumed theories for soil support rather than ease of and methods of construction.
- Bedding materials and compaction levels not adequately defined.

This section discusses the Standard Installations and the appropriate indirect design procedures to be used with them. The Standard Installations are the most recent beddings developed by ACPA to allow the engineer to take into consideration modern installation techniques when designing concrete pipe. For more information on design using the Marston/Spangler beddings, see Appendix B.

INTRODUCTION

In 1970, ACPA began a long-range research program on the interaction of buried concrete pipe and soil. The research resulted in the comprehensive finite element computer program SPIDA, Soil-Pipe Interaction Design and Analysis, for the direct design of buried concrete pipe.

Since the early 1980's, SPIDA has been used for a variety of studies, including the development of four new Standard Installations, and a simplified microcomputer design program, SIDD, Standard Installations Direct Design.

The procedure presented here replaces the historical A, B, C, and D beddings used in the indirect design method and found in the appendix of this manual, with
the four new Standard Installations, and presents a state-of-the-art method for determination of bedding factors for the Standard Installations. Pipe and installation terminology as used in the Standard Installations, and this procedure, is defined in Illustration 4.2.

Illustration 4.2 Pipe/Installation Terminology

FOUR STANDARD INSTALLATIONS
Through consultations with engineers and contractors, and with the results of numerous SPIDA parameter studies, four new Standard Installations were developed and are presented in Illustration 4.4. The SPIDA studies were conducted for positive projection embankment conditions, which are the worst-case vertical load conditions for pipe, and which provide conservative results for other embankment and trench conditions.

The parameter studies confirmed ideas postulated from past experience and proved the following concepts:

- Loosely placed, uncompacted bedding directly under the invert of the pipe significantly reduces stresses in the pipe.
- Soil in those portions of the bedding and haunch areas directly under the pipe is difficult to compact.
- The soil in the haunch area from the foundation to the pipe springline provides significant support to the pipe and reduces pipe stresses.
- Compaction level of the soil directly above the haunch, from the pipe springline to the top of the pipe grade level, has negligible effect on pipe stresses. Compaction of the soil in this area is not necessary unless
required for pavement structures.
- Installation materials and compaction levels below the springline have a significant effect on pipe structural requirements.
The four Standard Installations provide an optimum range of soil-pipe interaction characteristics. For the relatively high quality materials and high compaction effort of a Type 1 Installation, a lower strength pipe is required. Conversely, a Type 4 Installation requires a higher strength pipe, because it was developed for conditions of little or no control over materials or compaction.

Generic soil types are designated in Illustration 4.5. The Unified Soil Classification System (USCS) and American Association of State Highway and Transportation Officials (AASHTO) soil classifications equivalent to the generic soil types in the Standard Installations are also presented in Illustration 4.5.

Illustration 4.3 Standard Trench/Embankment Installation
The SPIDA design runs with the Standard Installations were made with medium compaction of the bedding under the middle-third of the pipe, and with some compaction of the overfill above the springline of the pipe. This middlethird area under the pipe in the Standard Installations has been designated as loosely placed, uncompacted material. The intent is to maintain a slightly yielding bedding under the middle-third of the pipe so that the pipe may settle slightly into the bedding and achieve improved load distribution. Compactive efforts in the

Illustration 4.4	Standard Installations Soil and Minimum Compaction Requirements

Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side
Type 1	Do/24 minimum, not less than 75 mm (3"). If rock foundation, use Do/12 minimum, not less than 150 mm (6").	95\% Category I	90% Category I, 95\% Category II, or 100\% Category III
Type 2	Do/24 minimum, not less than 75 mm (3"). If rock foundation, use Do/12 minimum, not less than 150 mm (6").	$\begin{aligned} & 90 \% \text { Category I } \\ & \text { or } \\ & 95 \% \text { Category II } \end{aligned}$	85\% Category I, 90\% Category II, or 95\% Category III
Type 3	Do/24 minimum, not less than 75 mm (3"). If rock foundation, use Do/12 minimum, not less than 150 mm (6").	85\% Category I, 90\% Category II, or 95\% Category III	85\% Category I, 90\% Category II, or 95\% Category III
Type 4	No bedding required, except if rock foundation, use Do/12 minimum, not less than 150 mm (6").	No compaction required, except if Category III, use 85% Category III	No compaction required, except if Category III, use 85% Category III

Notes:

1. Compaction and soil symbols - i.e. "95\% Category l"- refers to Category I soil material with minimum standard Proctor compaction of 95%. See Illustration 4.5 for equivalent modified Proctor values.
2. Soil in the outer bedding, haunch, and lower side zones, except under the middle $1 / 3$ of the pipe, shall be compacted to at least the same compaction as the majority of soil in the overfill zone.
3. For trenches, top elevation shall be no lower than 0.1 H below finished grade or, for roadways, its top shall be no lower than an elevation of 1 foot below the bottom of the pavement base material.
4. For trenches, width shall be wider than shown if required for adequate space to attain the specified compaction in the haunch and bedding zones.
5. For trench walls that are within 10 degrees of vertical, the compaction or firmness of the soil in the trench walls and lower side zone need not be considered.
6. For trench walls with greater than 10 degree slopes that consist of embankment, the lower side shall be compacted to at least the same compaction as specified for the soil in the backfill zone.
7. Subtrenches
7.1 A subtrench is defined as a trench with its top below finished grade by more than 0.1 H or, for roadways, its top is at an elevation lower than 1 ft . below the bottom of the pavement base material.
7.2 The minimum width of a subtrench shall be $1.33 D_{o}$ or wider if required for adequate space to attain the specified compaction in the haunch and bedding zones.
7.3 For subtrenches with walls of natural soil, any portion of the lower side zone in the subtrench wall shall be at least as firm as an equivalent soil placed to the compaction requirements specified for the lower side zone and as firm as the majority of soil in the overfill zone, or shall be removed and replaced with soil compacted to the specified level.
middle-third of the bedding with mechanical compactors is undesirable, and could produce a hard flat surface, which would result in highly concentrated stresses in the pipe invert similar to those experienced in the three-edge bearing test. The most desirable construction sequence is to place the bedding to grade; install the pipe to grade; compact the bedding outside of the middle-third of the pipe; and then place and compact the haunch area up to the springline of the pipe. The bedding outside the middle-third of the pipe may be compacted prior to placing the pipe.

As indicated in Illustrations 4.3 and 4.4, when the design includes surface loads, the overfill and lower side areas should be compacted as required to support the surface load. With no surface loads or surface structure requirements, these areas need not be compacted.

Illustration 4.5 Equivalent USCS and AASHTO Soil Classifications for SIDD Soil Designations

	Representative Soil Types		Percent Compaction	
SIDD Soil	USCS,	Standard AASHTO	Standard Proctor	Modified Proctor
	SW, SP,	A1,A3	100	95
	GW, GP		95	90
(Category 1)			90	85
			85	80
			80	75
Sandy		61	59	
Silt			100	95
(Category II)	GM, SM, ML,	A2, A4	95	90
	Also GC, SC			85
	passing \#200 sieve		80	80
			80	75
Silty			49	46
Clay			100	90
(Category III)	CL, MH,	A5, A6	95	85
	GC, SC		90	80
			85	75
			80	70
			45	40

SELECTION OF STANDARD INSTALLATION

The selection of a Standard Installation for a project should be based on an evaluation of the quality of construction and inspection anticipated. A Type 1 Standard Installation requires the highest construction quality and degree of inspection. Required construction quality is reduced for a Type 2 Standard Installation, and reduced further for a Type 3 Standard Installation. A Type 4 Standard Installation requires virtually no construction or quality inspection. Consequently, a Type 4 Standard Installation will require a higher strength pipe, and a Type I Standard Installation will require a lower strength pipe for the same depth of installation.

LOAD PRESSURES

SPIDA was programmed with the Standard Installations, and many design runs were made. An evaluation of the output of the designs by Dr. Frank J. Heger produced a load pressure diagram significantly different than proposed by previous theories. See Illustration 4.6. This difference is particularly significant under the pipe in the lower haunch area and is due in part to the assumption of the existence of partial voids adjacent to the pipe wall in this area. SIDD uses this pressure data to determine moments, thrusts, and shears in the pipe wall, and then uses the ACPA limit states design method to determine the required reinforcement areas to handle the pipe wall stresses. Using this method, each criteria that may limit or govern the design is considered separately in the evaluation of overall design requirements. SIDD, which is based on the four Standard Installations, is a standalone program developed by the American Concrete Pipe Association.

The Federal Highway Administration, FHWA, developed a microcomputer program, PIPECAR, for the direct design of concrete pipe prior to the development of SIDD. PIPECAR determines moment, thrust, and shear coefficients from either of two systems, a radial pressure system developed by Olander in 1950 and a uniform pressure system developed by Paris in the 1920's, and also uses the ACPA limit states design method to determine the required reinforcement areas to handle the pipe wall stresses. The SIDD system has been incorporated into PIPECAR as a state-of-the-art enhancement.

DETERMINATION OF EARTH LOAD

Positive Projecting Embankment Soil Load. Concrete pipe can be installed in either an embankment or trench condition as discussed previously. The type of installation has a significant effect on the loads carried by the rigid pipe. Although narrow trench installations are most typical, there are many cases where the pipe is installed in a positive projecting embankment condition, or a trench with a width significant enough that it should be considered a positive projecting embankment condition. In this condition the soil along side the pipe will settle more than the soil above the rigid pipe structure, thereby imposing additional load to the prism of soil directly above the pipe. With the Standard Installations, this additional load is accounted for by using a Vertical Arching Factor, VAF. This factor is multiplied by the prism load, PL, (weight of soil directly above the pipe) to give the total load of soil on the pipe.

$$
\begin{equation*}
\mathrm{W}=\mathrm{VAF} \times \mathrm{PL} \tag{4.1}
\end{equation*}
$$

Unlike the previous design method used for the Marston/Spangler beddings there is no need to assume a projection or settlement ratio. The Vertical Arching Factors for the Standard Installations are as shown in Illustration 4.7. The equation for soil prism load is shown below in Equation 4.2.

The prism load, PL , is further defined as:

$$
\begin{equation*}
P L=\gamma_{s}\left[H+\frac{D_{0}(4-\pi)}{8}\right] D_{0} \tag{4.2}
\end{equation*}
$$

where:
$\gamma_{\mathrm{s}}=$ soil unit weight, (lbs/ft ${ }^{3}$)
$\mathrm{H}=$ height of fill, (ft)
$D_{0}=$ outside diameter, (ft)

Illustration 4.6 Arching Coefficients and Heger Earth Pressure Distributions

Installation Type		VAF	HAF	A1	A2	A3	A4	A5	A6	a	\mathbf{b}	\mathbf{c}	\mathbf{e}	\mathbf{f}	\mathbf{u}
1	1.35	0.45	0.62	0.73	1.35	0.19	0.08	0.18	1.40	0.40	0.18	0.08	0.05	0.80	0.80
2	1.40	0.40	0.85	0.55	1.40	0.15	0.08	0.17	1.45	0.40	0.19	0.10	0.05	0.82	0.70
3	1.40	0.37	1.05	0.35	1.40	0.10	0.10	0.17	1.45	0.36	0.20	0.12	0.05	0.85	0.60
4	1.45	0.30	1.45	0.00	1.45	0.00	0.11	0.19	1.45	0.30	0.25	0.00	-	0.90	-

Notes:

1. VAF and HAF are vertical and horizontal arching factors. These coefficients represent nondimensional total vertical and horizontal loads on the pipe, respectively. The actual total vertical and horizontal loads are (VAF) $X(P L)$ and (HAF) $X(P L)$, respectively, where PL is the prism load.
2. Coefficients A1 through A6 represent the integration of non-dimensional vertical and horizontal components of soil pressure under the indicated portions of the component pressure diagrams (i.e. the area under the component pressure diagrams). The pressures are assumed to vary either parabolically or linearly, as shown, with the non-dimensional magnitudes at governing points represented by h1, h2, uh1, vh2, a and b. Non-dimensional horizontal and vertical dimensions of component pressure regions are defined by $c, d, e, v c, v d$, and f coefficients.
3. d is calculated as ($0.5-c-e$).
h1 is calculated as (1.5A1) / (c) ($1+u$).
$h 2$ is calculated as $(1.5 A 2) /[(d)(1+v)+(2 e)]$

Illustration 4.7 Vertical Arching Factor (VAF)

Standard Installation	VAF
Type 1	1.35
Type 2	1.40
Type 3	1.40
Type 4	1.45

Note:
VAF are vertical arching factors. These coefficients represent nondimensional total vertical loads on the pipe. The actual total vertical loads are (VAF) $\mathrm{X}(\mathrm{PL})$, where PL is the prism load.

Trench Soil Load. In narrow or moderate trench width conditions, the resulting earth load is equal to the weight of the soil within the trench minus the shearing (frictional) forces on the sides of the trench. Since the new installed backfill material will settle more than the existing soil on the sides of the trench, the friction along the trench walls will relieve the pipe of some of its soil burden. The Vertical Arching Factors in this case will be less than those used for embankment design. The backfill load on pipe installed in a trench condition is computed by the equation:

$$
\begin{equation*}
W_{d}=C_{d} \gamma_{s} B_{d}^{2}+\frac{D_{0}^{2}(4-\pi)}{8} \gamma_{s} \tag{4.3}
\end{equation*}
$$

The trench load coefficient, C_{d}, is further defined as:
$C_{d}=\frac{1-e^{-2 K \mu^{\prime} \frac{\mathrm{H}}{B_{d}}}}{2 K \mu^{\prime}}$
where:
$\mathrm{B}_{\mathrm{d}}=$ width of trench, (ft)
$\mathrm{K}=$ ratio of active lateral unit pressure to vertical unit pressure
$\mu^{\prime}=\tan \varnothing^{\prime}$, coefficient of friction between fill material and sides of trench
The value of C_{d} can be calculated using equation 4.4 above, or read from Figure 214 in the Appendix.

Typical values of $K \mu$ are:
$K \mu^{\prime}=.1924$ Max. for granular materials without cohesion
$K \mu^{\prime}=.165 \mathrm{Max}$ for sand and gravel
$K \mu^{\prime}=.150 \mathrm{Max}$. for saturated top soil
$K \mu^{\prime}=.130 \mathrm{Max}$. for ordinary clay
$K \mu^{\prime}=.110 \mathrm{Max}$ for saturated clay
As trench width increases, the reduction in load from the frictional forces is offset by the increase in soil weight within the trench. As the trench width increases it starts to behave like an embankment, where the soil on the side of the pipe settles more than the soil above the pipe. Eventually, the embankment condition is reached when the trench walls are too far away from the pipe to help support the soil immediately adjacent to it. The transition width is the width of a
trench at a particular depth where the trench load equals the embankment load. Once transition width is reached, there is no longer any benefit from frictional forces along the wall of the trench. Any pipe installed in a trench width equal to or greater than transition width should be designed for the embankment condition.

Tables 13 through 39 are based on equation (4.2) and list the transition widths for the four types of beddings with various heights of backfill.

Negative Projection Embankment Soil Load. The fill load on a pipe installed in a negative projecting embankment condition is computed by the equation:
$W_{n}=C_{n} w B_{d}{ }^{2}$
The embankment load coefficient C_{n} is further defined as:

$$
\begin{array}{ll}
C_{n}=\frac{1-e^{-2 K \mu^{\prime} \frac{H}{B_{d}}}}{2 K \mu^{\prime}} & \text { when } H H_{e} \\
C_{n}=\frac{1-e^{-2 K \mu^{\prime} \cdot \frac{H_{e}}{B_{d}}}}{2 K \mu^{\prime}}+\left(\frac{H}{B_{d}}+\frac{H_{e}}{B_{d}}\right) e^{-2 K \mu^{\prime} \frac{H_{e}}{B_{d}}} \quad \text { when } H>H_{e} \tag{4.7}
\end{array}
$$

The settlements which influence loads on negative projecting embankment installations are shown in Illustration 4.8.

Illustration 4.8 Settlements Which Influence Loads Negative Projection Embankment Installation

TOP OF EMBANKMENT

The settlement ratio is the numerical relationship between the pipe deflection and the relative settlement between the prism of fill directly above the pipe and adjacent soil. It is necessary to define the settlement ratio for negative projection embankment installations. Equating the deflection of the pipe and the total settlement of the prism of fill above the pipe to the settlement of the adjacent soil, the settlement ratio is:

$$
\begin{equation*}
r_{s d}=\frac{S_{g-}\left(S_{d}+S_{f}+d_{c}\right)}{S_{d}} \tag{4.8}
\end{equation*}
$$

Recommended settlement ratio design values are listed in Table 40. The projection ratio (p ') for this type of installation is the distance from the top of the pipe to the surface of the natural ground or compacted fill at the time of installation divided by the width of the trench. Where the ground surface is sloping, the average vertical distance from the top of the pipe to the original ground should be used in determining the projection ratio (p'). Figures 194 through 213 present fill loads in pounds per linear foot for circular pipe based on projection ratios of 0.5 , $1.0,1.5,2.0$ and settlement ratios of $0,-0.1,-0.3,-0.5$ and -1.0 . The dashed $\mathrm{H}=$ $p^{\prime} B_{d}$ line represents the limiting condition where the height of fill is at the same elevation as the natural ground surface. The dashed $H=H_{e}$ line represents the condition where the height of the plane of equal settlement $\left(\mathrm{H}_{\mathrm{e}}\right)$ is equal to the height of fill (H).

Jacked or Tunneled Soil Load. This type of installation is used where surface conditions make it difficult to install the pipe by conventional open excavation and backfill methods, or where it is necessary to install the pipe under an existing embankment. The earth load on a pipe installed by these methods is computed by the equation:
$W_{t}=C_{t} w B_{t}{ }^{2}-2 c C_{t} B_{t}$
where:
$\mathrm{B}_{\mathrm{t}}=$ width of tunnel bore, (ft)
The jacked or tunneled load coefficient C_{t} is further defined as:

$$
\begin{equation*}
C_{t}=\frac{1-e^{-2 K \mu^{\prime} \frac{H}{B_{t}}}}{2 K u^{\prime}} \tag{4.10}
\end{equation*}
$$

In equation (4.9) the $C_{t} w B_{t}{ }^{2}$ term is similar to the Negative Projection Embankment equation (4.5) for soil loads and the $2 \mathrm{c}_{t} \mathrm{~B}_{\mathrm{t}}$ term accounts for the cohesion of undisturbed soil. Conservative design values of the coefficient of cohesion for various soils are listed in Table 41. Figures 147, 149, 151 and 153 present values of the trench load term ($\mathrm{C}_{t} w \mathrm{~B}_{t}^{2}$) in pounds per linear foot for a soil density of 120 pounds per cubic foot and Km^{\prime} values of $0.165,0.150,0.130$ and 0.110 . Figures $148,150,152$ and 154 present values of the cohesion term ($2 c C_{t} B_{t}$) divided by the design value for the coefficient of cohesion (c). To obtain the total earth load for any given height of cover, width of bore or tunnel and type of soil, the value of the cohesion term must be multiplied by the appropriate coefficient of cohesion (c) and this product subtracted from the value of the trench load term.

FLUID LOAD

Fluid weight typically is about the same order of magnitude as pipe weight and generally represents a significant portion of the pipe design load only for large diameter pipe under relatively shallow fills. Fluid weight has been neglected in the traditional design procedures of the past, including the Marston Spangler design method utilizing the B and C beddings. There is no documentation of concrete pipe failures as a result of neglecting fluid load. However, some specifying agencies such as AASHTO and CHBDC, now require that the weight of the fluid inside the pipe always be considered when determining the D-load.

The Sixteenth Edition of the AASHTO Standard Specifications For Highway Bridges states: "The weight of fluid, W_{F}, in the pipe shall be considered in design based on a fluid weight, γ_{w}, of $62.4 \mathrm{lbs} / \mathrm{cu} . \mathrm{ft}$, unless otherwise specified."

DETERMINATION OF LIVE LOAD

To determine the required supporting strength of concrete pipe installed under asphalts, other flexible pavements, or relatively shallow earth cover, it is necessary to evaluate the effect of live loads, such as highway truck loads, in addition to dead loads imposed by soil and surcharge loads.

If a rigid pavement or a thick flexible pavement designed for heavy duty traffic is provided with a sufficient buffer between the pipe and pavement, then the live load transmitted through the pavement to the buried concrete pipe is usually negligible at any depth. If any culvert or sewer pipe is within the heavy duty traffic highway right-of-way, but not under the pavement structure, then such pipe should be analyzed for the effect of live load transmission from an unsurfaced roadway, because of the possibility of trucks leaving the pavement.

The AASHTO design loads commonly used in the past were the HS 20 with a 32,000 pound axle load in the Normal Truck Configuration, and a 24,000 pound axle load in the Alternate Load Configuration.

The AASHTO LRFD designates an HL 93 Live Load. This load consists of the greater of a HS 20 with 32,000 pound axle load in the Normal Truck Configuration, or a 25,000 pound axle load in the Alternate Load Configuration. In addition, a 640 pound per linear foot Lane Load is applied across a 10 foot wide lane at all depths of earth cover over the top of the pipe, up to a depth of 8 feet. This Lane Load converts to an additional live load of 64 pounds per square foot, applied to the top of the pipe for any depth of burial less than 8 feet. The average pressure intensity caused by a wheel load is calculated by Equation 4.12. The Lane Load intensity is added to the wheel load pressure intensity in Equation 4.13.

The HS 20, 32,000 pound and the Alternate Truck 25,000 pound design axle are carried on dual wheels. The contact area of the dual wheels with the ground is assumed to be rectangle, with dimensions presented in Illustration 4.9.

Illustration 4.9 AASHTO Wheel Load Surface Contact Area (Foot Print)

16000 lb . HS 20 Load
12500 lb . LRFD Altemate Load

Illustration 4.10 AASHTO Wheel Loads and Wheel Spacings

Impact Factors. The AASHTO LRFD Standard applies a dynamic load allowance, sometimes called Impact Factor, to account for the truck load being non-static. The dynamic load allowance, IM, is determined by Equation 4.11:
$I M=\frac{33(1.0-0.125 H)}{100}$
where:
$\mathrm{H}=$ height of earth cover over the top of the pipe, ft.

Load Distribution. The surface load is assumed to be uniformly spread on any horizontal subsoil plane. The spread load area is developed by increasing the length and width of the wheel contact area for a load configuration as shown in Illustration 4.13 for a dual wheel. On a horizontal soil plane, the dimensional increases to the wheel contact area are based on height of earth cover over the top of the pipe as presented in Illustration 4.11 for two types of soil.

Illustration 4.11 Dimensional Increase Factor, AASHTO LRFD

Soil Type	Dimensional Increase Factor
LRFD select granular	1.15 H
LRFD any other soil	1.00 H

As indicated by Illustrations 4.14 and 4.15 , the spread load areas from adjacent wheels will overlap as height of earth cover over the top of the pipe increases. At shallow depths, the maximum pressure will be developed by an HS 20 dual wheel, since at 16,000 pounds it applies a greater load than the 12,500 pound Alternate Load. At intermediate depths, the maximum pressure will be developed by the wheels of two HS 20 trucks in the passing mode, since at 16,000 pounds each, the two wheels apply a greater load than the 12,500 pounds of an Alternate Load wheel. At greater depths, the maximum pressure will be developed by wheels of two Alternate Load configuration trucks in the passing mode, since at 12,500 pounds each, the four wheels apply the greatest load(50,000 pounds). Intermediate depths begin when the spread area of dual wheels of two HS 20 trucks in the passing mode meet and begin to overlap. Greater depths begin when the spread area b of two single dual wheels of two Alternate Load configurations in the passing mode meet and begin to overlap.

Since the exact geometric relationship of individual or combinations of surface wheel loads cannot be anticipated, the most critical loading configurations along with axle loads and rectangular spread load area are presented in Illustration 4.12 for the two AASHTO LRFD soil types.

Illustration 4.12 LRFD Critical Wheel Loads and Spread Dimensions at the Top of the Pipe

Vehicle Traveling Perpendicular to Pipe					
	H, ft	P, Ibs	Spread a, ft	Spread b, ft	Figure
Live Load Distribution of $1.15 \times \mathrm{H}$ for Select Granular Fill	$\mathrm{H}+1.15 \mathrm{D}_{0}<2.05$	16,000	a + 1.15H	$b+1.15 \mathrm{H}$	3
	$2.05-1.15 \mathrm{D}_{0}<\mathrm{H}<5.5$	32,000	$\mathrm{a}+4+1.15 \mathrm{H}$	$b+1.15 \mathrm{H}$	4
	$5.5<\mathrm{H}$	50,000	$\mathrm{a}+4+1.15 \mathrm{H}$	$\mathrm{b}+4+1.15 \mathrm{H}$	5
Live Load Distribution of $1.0 \times \mathrm{H}$ for Other Soils	$\mathrm{H}+1.30 \mathrm{D}_{0}<2.30$	16,000	$\mathrm{a}+1.00 \mathrm{H}$	$b+1.00 \mathrm{H}$	3
	$2.30-1.30 \mathrm{D}_{0}<\mathrm{H}<6.3$	32,000	$\mathrm{a}+4+1.00 \mathrm{H}$	$b+1.00 \mathrm{H}$	4
	$6.3<\mathrm{H}$	50,000	$\mathrm{a}+4+1.00 \mathrm{H}$	$\mathrm{b}+4+1.00 \mathrm{H}$	5
Vehicle Traveling Parallel to Pipe					
Live Load Distribution of 1.15 xH for Select Granular Fill	H < 2.03	16,000	$a+1.15 \mathrm{H}$	$\mathrm{b}+1.15 \mathrm{H}$	3
	$2.03<\mathrm{H}<5.5$	32,000	$\mathrm{a}+4+1.15 \mathrm{H}$	$b+1.15 \mathrm{H}$	4
	$5.5<\mathrm{H}$	50,000	$\mathrm{a}+4+1.15 \mathrm{H}$	$\mathrm{b}+4+1.15 \mathrm{H}$	5
Live Load Distribution of $1.0 \times \mathrm{H}$ for Other Soils	$\mathrm{H}<2.33$	16,000	$\mathrm{a}+1.00 \mathrm{H}$	$b+1.00 \mathrm{H}$	3
	$2.33<\mathrm{H}<6.3$	32,000	$\mathrm{a}+4+1.00 \mathrm{H}$	$b+1.00 \mathrm{H}$	4
	$6.3<\mathrm{H}$	50,000	$\mathrm{a}+4+1.00 \mathrm{H}$	$\mathrm{b}+4+1.00 \mathrm{H}$	5

Illustration 4.13 Spread Load Area - Single Dual Wheel

Illustration 4.14 Spread Load Area - Two Single Dual Wheels of Trucks in Passing Mode

Illustration 4.15 Spread Load Area - Two Single Dual Wheels of Two Alternate Loads in Passing Mode

Average Pressure Intensity. The wheel load average pressure intensity on the subsoil plane at the outside top of the concrete pipe is:
$w=\frac{P(1+I M)}{A}$
where:
$\mathrm{w}=$ wheel load average pressure intensity, pounds per square foot
$P=$ total live wheel load applied at the surface, pounds
A = spread wheel load area at the outside top of the pipe, square feet
IM = dynamic load allowance
From the appropriate Table in Illustration 4.12, select the critical wheel load and spread dimensions for the height of earth cover over the outside top of the pipe, H. The spread live load area is equal to Spread a times Spread b. Select the appropriate dynamic load allowance, using Equation 4.11.

Total Live Load. A designer is concerned with the maximum possible loads, which occur when the distributed load area is centered over the buried pipe. Depending on the pipe size and height of cover, the most critical loading orientation can occur either when the truck travels transverse or parallel to the centerline of the pipe. Illustration 4.16 shows the dimensions of the spread load area, A, as related to whether the truck travel is transverse or parallel to the centerline of the pipe.

Illustration 4.16 Spread Load Area Dimensions vs Direction of Truck

Unless you are certain of the pipeline orientation, the total live load in pounds, W_{T}, must be calculated for each travel orientation, and the maximum calculated value must be used in Equation 4.14 to calculate the live load on the pipe in pounds per linear foot.

The LRFD requires a Lane Load, L_{L}, of 64 pounds per square foot on the top of the pipe at any depth less than 8 feet.

The total live load acting on the pipe is:

$$
\begin{equation*}
W_{T}=\left(w+L_{L}\right) L S_{L} \tag{4.13}
\end{equation*}
$$

where:

$\mathrm{W}_{\mathrm{T}}=$	total live load, pounds
W	$=$ wheel load average pressure intensity, pounds per square
	foot (at the top of the pipe)

$L_{L} \quad=\quad$ lane loading if AASHTO LRFD is used, pounds per square foot
$0 \leq H<8, L_{L}=64$, pounds per square foot
$H \geq 8, L_{L}=0$
$\mathrm{L} \quad=$ dimension of load area parallel to the longitudinal axis of pipe, feet
$\mathrm{S}_{\mathrm{L}} \quad=$ outside horizontal span of pipe, B_{c}, or dimension of load area transverse to the longitudinal axis of pipe, whichever is less, feet

Total Live Load in Pounds per Linear Foot. The total live load in pounds per linear foot, W_{L}, is calculated by dividing the Total Live Load, W_{T}, by the Effective Supporting Length, L_{e} (See Illustration 4.17), of the pipe:
$\mathrm{W}_{\mathrm{L}}=\frac{\mathrm{W}_{\mathrm{T}}}{\mathrm{L}_{\mathrm{e}}}$
where:
$W_{L}=$ live load on top of pipe, pounds per linear foot
$L_{e}=$ effective supporting length of pipe, feet
The effective supporting length of pipe is:
$L_{e}=L+1.75\left(3 / 4 R_{o}\right)$
where:
$R_{o}=$ outside vertical Rise of pipe, feet
Illustration 4.17 Effective Supporting Length of Pipe

Illustration 4.18 Load Spread through Soil and Pipe

Airports. The distribution of aircraft wheel loads on any horizontal plane in the soil mass is dependent on the magnitude and characteristics of the aircraft loads, the aircraft's landing gear configuration, the type of pavement structure and the subsoil conditions. Heavier gross aircraft weights have resulted in multiple wheel undercarriages consisting of dual wheel assemblies and/or dual tandem assemblies. The distribution of wheel loads through rigid pavement are shown in Illustration 4.18 .

If a rigid pavement is provided, an aircraft wheel load concentration is distributed over an appreciable area and is substantially reduced in intensity at the subgrade. For multi-wheeled landing gear assemblies, the total pressure intensity is dependent on the interacting pressures produced by each individual wheel. The maximum load transmitted to a pipe varies with the pipe size under consideration, the pipe's relative location with respect to the particular landing gear configuration and the height of fill between the top of the pipe and the subgrade surface.

For a flexible pavement, the area of the load distribution at any plane in the soil mass is considerably less than for a rigid pavement. The interaction of pressure intensities due to individual wheels of a multi-wheeled landing gear assembly is also less pronounced at any given depth of cover.

In present airport design practices, the aircraft's maximum takeoff weight is used since the maximum landing weight is usually considered to be about three fourths the takeoff weight. Impact is not considered, as criteria are not yet available to include dynamic effects in the design process.

Rigid Pavement.

Illustration 4.19 Aircraft Pressure Distribution, Rigid Pavement

Fill Height $\mathrm{H}=2$ Feet

Fill Height $\mathrm{H}=6$ Feet
The pressure intensity is computed by the equation:

$$
\begin{equation*}
\mathrm{p}(\mathrm{H}, \mathrm{X})=\frac{\mathrm{CP}}{\mathrm{R}_{\mathrm{c}}{ }^{2}} \tag{4.15}
\end{equation*}
$$

where:
P = Load at the surface, pounds
$C=$ Load coefficient, dependent on the horizontal distance (X), the vertical distance (H), and R_{s}
$R_{s}=$ Radius of Stiffness of the pavement, feet
R_{s} is further defined as:
$R_{S}=\sqrt[4]{\frac{(E h)^{3}}{12\left(1-\mu^{2}\right) k}}$
where:
$E=$ modulus of elasticity of the pavement, pounds per square inch
$\mathrm{h}=$ pavement thickness, inches
$\mu=$ Poisson's ratio (generally assumed 0.15 for concrete pavement)
$k=$ modulus of subgrade reaction, pounds per cubic inch
Tables 46 through 50 present pressure coefficients in terms of the radius of stiffness as developed by the Portland Cement Association and published in the report "Vertical Pressure on Culverts Under Wheel Loads on Concrete Pavement Slabs." 3

Values of radius of stiffness are listed in Table 52 for pavement thickness and modulus of subgrade reaction.

Tables 53 through 55 present aircraft loads in pounds per linear foot for circular, horizontal elliptical and arch pipe. The Tables are based on equations
4.15 and 4.16 using a 180,000 pound dual tandem wheel assembly, 190 pounds per square inch tire pressure, 26 -inch spacing between dual tires, 66 -inch spacing between tandem axles, k value of 300 pounds per cubic inch, 12 -inch, thick concrete pavement and an R_{s}, value of 37.44 inches. Subgrade and subbase support for a rigid pavement is evaluated in terms of k, the modulus of subgrade reaction. A k value of 300 pounds per cubic inch was used, since this value represents a desirable subgrade or subbase material. In addition, because of the interaction between the pavement and subgrade, a lower value of k (representing reduced subgrade support) results in less load on the pipe.

Although Tables 53 through 55 are for specific values of aircraft weights and landing gear configuration, the tables can be used with sufficient accuracy for all heavy commercial aircraft currently in operation. Investigation of the design loads of future jets indicates that although the total loads will greatly exceed present aircraft loads, the distribution of such loads over a greater number of landing gears and wheels will not impose loads on underground conduits greater than by commercial aircraft currently in operation. For lighter aircrafts and/or different rigid pavement thicknesses, it is necessary to calculate loads as illustrated in Example 4.10.

Flexible Pavement. AASHTO considers flexible pavement as an unpaved surface and therefore live load distributions may be calculated as if the load were bearing on soil. Cover depths are measured from the top of the flexible pavement.

Railroads. In determining the live load transmitted to a pipe installed under railroad tracks, the weight on the locomotive driver axles plus the weight of the track structure, including ballast, is considered to be uniformly distributed over an area equal to the length occupied by the drivers multiplied by the length of ties.

The American Railway Engineering and Maintenance of Way Association (AREMA) recommends a Cooper E80 loading with axle loads and axle spacing as shown in Illustration 4.19. Based on a uniform load distribution at the bottom of the ties and through the soil mass, the live load transmitted to a pipe underground is computed by the equation:

$$
\begin{equation*}
W_{L}=C p_{0} B_{c} I_{f} \tag{4.17}
\end{equation*}
$$

where:
$C=$ load coefficient
$p_{0}=$ tire pressure, pounds per square foot
$B_{c}=$ outside span of the pipe, feet
$I_{f}=$ impact factor
Tables 56 through 58 present live loads in pounds per linear foot based on equation (4.17) with a Cooper E80 design loading, track structure weighing 200 pounds per linear foot and the locomotive load uniformly distributed over an area 8 feet $X 20$ feet yielding a uniform live load of 2025 pounds per square foot. In accordance with the AREMA "Manual of Recommended Practice" an impact factor of 1.4 at zero cover decreasing to 1.0 at ten feet of cover is included in the Tables.

Illustration 4.20 Cooper E 80 Wheel Loads and Axel Spacing

Based on a uniform load distribution at the bottom of the ties and through the

3 Op. cit., p. 28
4 Equation (21) is recommended by WPCF-ASCE Manual, The Design and Construction of Sanitary Storm Sewers.
soil mass, the design track unit load, W_{L}, in pounds per square foot, is determined from the AREMA graph presented in Figure 215. To obtain the live load transmitted to the pipe in pounds per linear foot, it is necessary to multiply the unit load, W_{L}, from Figure 215, by the outside span, B_{c}, of the pipe in feet.

Loadings on a pipe within a casing pipe shall be taken as the full dead load, plus live load, plus impact load without consideration of the presence of the casing pipe, unless the casing pipe is fully protected from corrosion.

Culvert or sewer pipe within the railway right-of-way, but not under the track structure, should be analyzed for the effect of live loads because of the possibility of train derailment.

Construction Loads. During grading operations it may be necessary for heavy construction equipment to travel over an installed pipe. Unless adequate protection is provided, the pipe may be subjected to load concentrations in excess of the design loads. Before heavy construction equipment is permitted to cross over a pipe, a temporary earth fill should be constructed to an elevation at least 3 feet over the top of the pipe. The fill should be of sufficient width to prevent possible lateral displacement of the pipe.

SELECTION OF BEDDING

A bedding is provided to distribute the vertical reaction around the lower exterior surface of the pipe and reduce stress concentrations within the pipe wall. The load that a concrete pipe will support depends on the width of the bedding contact area and the quality of the contact between the pipe and bedding. An important consideration in selecting a material for bedding is to be sure that positive contact can be obtained between the bed and the pipe. Since most granular materials will shift to attain positive contact as the pipe settles, an ideal load distribution can be attained through the use of clean coarse sand, wellrounded pea gravel or well-graded crushed rock.

BEDDING FACTORS

Under installed conditions the vertical load on a pipe is distributed over its width and the reaction is distributed in accordance with the type of bedding. When the pipe strength used in design has been determined by plant testing, bedding
factors must be developed to relate the in-place supporting strength to the more severe plant test strength. The bedding factor is the ratio of the strength of the pipe under the installed condition of loading and bedding to the strength of the pipe in the plant test. This same ratio was defined originally by Spangler as the load factor. This latter term, however, was subsequently defined in the ultimate strength method of reinforced concrete design with an entirely different meaning. To avoid confusion, therefore, Spangler's term was renamed the bedding factor. The threeedge bearing test as shown in Illustration 4.20 is the normally accepted plant test so that all bedding factors described in the following pages relate the in-place supporting strength to the three-edge bearing strength.

Illustration 4.21 Three-Edge Bearing Test

Although developed for the direct design method, the Standard Installations are readily applicable to and simplify the indirect design method. The Standard Installations are easier to construct and provide more realistic designs than the historical A, B, C, and D beddings. Development of bedding factors for the Standard Installations, as presented in the following paragraphs, follows the concepts of reinforced concrete design theories. The basic definition of bedding factor is that it is the ratio of maximum moment in the three-edge bearing test to the maximum moment in the buried condition, when the vertical loads under each condition are equal:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{f}}=\frac{\mathrm{M}_{\text {TEST }}}{\mathrm{M}_{\mathrm{FIELD}}} \tag{4.18}
\end{equation*}
$$

where:
$\begin{array}{ll}\mathrm{B}_{\mathrm{f}} & =\text { bedding factor } \\ \mathrm{M}_{\text {TEST }} & =\text { maximum moment in pipe wall under three-edge bearing test } \\ & \text { load, inch-pounds } \\ \mathrm{M}_{\text {FIELD }} & =\text { maximum moment in pipe wall under field loads, inch-pounds }\end{array}$
Consequently, to evaluate the proper bedding factor relationship, the vertical load on the pipe for each condition must be equal, which occurs when the springline axial thrusts for both conditions are equal. In accordance with the laws of statics and equilibrium, $\mathrm{M}_{\text {TEST }}$ and $\mathrm{M}_{\text {FIELD }}$ are:

$$
\begin{align*}
& M_{\text {TEST }}=\left[0.318 N_{\text {FS }}\right] \times[D+t] \tag{4.19}\\
& M_{\text {FIELD }}=\left[M_{\text {FI }}\right]-\left[0.38 t N_{\text {FI }}\right]-\left[0.125 N_{\text {FI }} \times \mathrm{c}\right] \tag{4.20}
\end{align*}
$$

where:
$N_{\text {FS }}=$ axial thrust at the springline under a three-edge bearing test load, pounds per foot
D = inside pipe diameter, inches
$\mathrm{t}=$ pipe wall thickness, inches
$M_{F 1}=$ moment at the invert under field loading, inch-pounds/tt
$N_{\text {FI }}=$ axial thrust at the invert under field loads, pounds per foot
c $=$ thickness of concrete cover over the inner reinforcement, inches
Substituting equations 4.19 and 4.20 into equation 4.18.

$$
\begin{equation*}
\left.B_{f}=\frac{\left[0.318 N_{F S}\right] \times[D+t]}{\left[M_{F I}\right]-\left[0.38 t N_{F I}\right]-\left[0.125 N_{F I}\right.} \times C\right] \tag{4.21}
\end{equation*}
$$

Using this equation, bedding factors were determined for a range of pipe diameters and depths of burial. These calculations were based on one inch cover over the reinforcement, a moment arm of 0.875 d between the resultant tensile and compressive forces, and a reinforcement diameter of 0.075t. Evaluations indicated that for A, B and C pipe wall thicknesses, there was negligible variation in the bedding factor due to pipe wall thickness or the concrete cover, c, over the reinforcement. The resulting bedding factors are presented in Illustration 4.21.

Illustration 4.22 Bedding Factors, Embankment Conditions, B_{fe}

Pipe	Standard Installation			
Diameter	Type 1	Type 2	Type 3	Type 4
12 in.	4.4	3.2	2.5	1.7
24 in.	4.2	3.0	2.4	1.7
36 in.	4.0	2.9	2.3	1.7
72 in.	3.8	2.8	2.2	1.7
144 in.	3.6	2.8	2.2	1.7

Notes:

1. For pipe diameters other than listed in Illustration 4.21, embankment condition factors, Be can be obtained by interpolation.
2. Bedding factors are based on the soils being placed with the minimum compaction specified in Illustration 4.4 for each standard installation.

Determination of Bedding Factor. For trench installations as discussed previously, experience indicates that active lateral pressure increases as trench width increases to the transition width, provided the sidefill is compacted. A SIDD parameter study of the Standard Installations indicates the bedding factors are constant for all pipe diameters under conditions of zero lateral pressure on the pipe. These bedding factors exist at the interface of the pipewall and the soil and are called minimum bedding factors, B_{fo}, to differentiate them from the fixed bedding factors developed by Spangler. Illustration 4.22 presents the minimum
bedding factors.
Illustration 4.23 Trench Minimum Bedding Factors, $\mathrm{B}_{\text {fo }}$

Standard Installation	Minimum Bedding Factor, $\mathbf{B}_{\text {to }}$
Type 1	2.3
Type 2	1.9
Type 3	1.7
Type 4	1.5

Note:

1. Bedding factors are based on the soils being placed with the minimum compaction specified in Illustration 4.4 for each Standard Installation.
2. For pipe installed in trenches dug in previously constructed embankment, the load and the bedding factor should be determined as an embankment condition unless the backfill placed over the pipe is of lesser compaction than the embankment.

A conservative linear variation is assumed between the minimum bedding factor and the bedding factor for the embankment condition, which begins at transition width.

Illustration 4.24 Variable Bedding Factor

The equation for the variable trench bedding factor, is:
$\mathrm{B}_{\mathrm{fv}}=\frac{\left[\mathrm{B}_{\mathrm{fe}}-\mathrm{B}_{\mathrm{fo}}\right]\left[\mathrm{B}_{\mathrm{d}-}-\mathrm{B}_{\mathrm{c}}\right]}{\left[\mathrm{B}_{\mathrm{dt}}-\mathrm{B}_{\mathrm{c}}\right]}+\mathrm{B}_{\mathrm{fo}}$
where:
$B_{c}=$ outside horizontal span of pipe, feet
$B_{d}=$ trench width at top of pipe, feet
$\mathrm{B}_{\mathrm{dt}}=$ transition width at top of pipe, feet
$\mathrm{B}_{\mathrm{fe}}=$ bedding factor, embankment
$B_{\text {fo }}=$ minimum bedding factor, trench
$B_{f v}=$ variable bedding factor, trench
Transition width values, B_{dt} are provided in Tables 13 through 39.
For pipe installed with 6.5 ft or less of overfill and subjected to truck loads, the controlling maximum moment may be at the crown rather than the invert. Consequently, the use of an earth load bedding factor may produce unconservative designs. Crown and invert moments of pipe for a range of diameters and burial depths subjected to HS20 truck live loadings were evaluated. Also evaluated, was the effect of bedding angle and live load angle (width of loading on the pipe). When HS20 or other live loadings are encountered to a significant value, the live load bedding factors, $\mathrm{B}_{\mathrm{fLL}}$, presented in Illustration 4.24 are satisfactory for a Type 4 Standard Installation and become increasingly conservative for Types 3, 2, and 1. Limitations on $B_{\text {fLL }}$ are discussed in the section on Selection of Pipe Strength.

Illustration 4.25 Bedding Factors, $\mathrm{B}_{\mathrm{fLL}}$, for HS20 Live Loadings

Fill Height, Ft.	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 2}$	$\mathbf{8 4}$	$\mathbf{9 6}$	$\mathbf{1 0 8}$	$\mathbf{1 2 0}$	$\mathbf{1 4 4}$
0.5	2.2	1.7	1.4	1.3	1.3	1.1	1.1	1.1	1.1	1.1	1.1
1.0	2.2	2.2	1.7	1.5	1.4	1.3	1.3	1.3	1.1	1.1	1.1
1.5	2.2	2.2	2.1	1.8	1.5	1.4	1.4	1.3	1.3	1.3	1.1
2.0	2.2	2.2	2.2	2.0	1.8	1.5	1.5	1.4	1.4	1.3	1.3
2.5	2.2	2.2	2.2	2.2	2.0	1.8	1.7	1.5	1.4	1.4	1.3
3.0	2.2	2.2	2.2	2.2	2.2	2.2	1.8	1.7	1.5	1.5	1.4
3.5	2.2	2.2	2.2	2.2	2.2	2.2	1.9	1.8	1.7	1.5	1.4
4.0	2.2	2.2	2.2	2.2	2.2	2.2	2.1	1.9	1.8	1.7	1.5
4.5	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0	1.9	1.8	1.7
5.0	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0	1.9	1.8

Application of Factor of Safety. The indirect design method for concrete pipe is similar to the common working stress method of steel design, which employs a factor of safety between yield stress and the desired working stress. In the indirect method, the factor of safety is defined as the relationship between the ultimate strength D-load and the 0.01 inch crack D-load. This relationship is specified in the ASTM Standards C 76 and C 655 on concrete pipe. The relationship between ultimate D-load and 0.01-inch crack D-load is 1.5 for 0.01 inch crack D-loads of 2,000 or less; 1.25 for 0.01 inch crack D loads of 3,000 or more; and a linear reduction from 1.5 to 1.25 for 0.01 inch crack D-loads between more than 2,000 and less than 3,000 . Therefore, a factor of safety of 1.0 should be applied if the 0.01 inch crack strength is used as the design criterion rather than the ultimate strength. The 0.01 inch crack width is an arbitrarily chosen test criterion and not a criteri for field performance or service limit.

SELECTION OF PIPE STRENGTH

The American Society for Testing and Materials has developed standard specifications for precast concrete pipe. Each specification contains design, manufacturing and testing criteria.

ASTM Standard C 14 covers three strength classes for nonreinforced concrete pipe. These classes are specified to meet minimum ultimate loads, expressed in terms of three-edge bearing strength in pounds per linear foot.

ASTM Standard C 76 for reinforced concrete culvert, storm drain and sewer pipe specifies strength classes based on D-load at 0.01-inch crack and/or ultimate load. The 0.01-inch crack D -load ($\mathrm{D}_{0.00}$) is the maximum three-edge-bearing test load supported by a concrete pipe before a crack occurs having a width of 0.01 inch measured at close intervals, throughout a length of at least 1 foot. The ultimate D-load ($\mathrm{D}_{\text {ult }}$) is the maximum three-edge-bearing test load supported by a pipe divided by the pipe's inside diameter. D-loads are expressed in pounds per linear foot per foot of inside diameter.

ASTM Standard C 506 for reinforced concrete arch culvert, storm drain, and sewer pipe specifies strengths based on D-load at 0.01 -inch crack and/or ultimate load in pounds per linear foot per foot of inside span.

ASTM Standard C 507 for reinforced concrete elliptical culvert, storm drain and sewer pipe specifies strength classes for both horizontal elliptical and vertical elliptical pipe based on D-load at 0.01-inch crack and/or ultimate load in pounds per linear foot per foot of inside span.

ASTM Standard C 655 for reinforced concrete D-load culvert, storm drain and sewer pipe covers acceptance of pipe designed to meet specific D-load requirements.

ASTM Standard C 985 for nonreinforced concrete specified strength culvert, storm drain, and sewer pipe covers acceptance of pipe designed for specified strength requirements.

Since numerous reinforced concrete pipe sizes are available, three-edge bearing test strengths are classified by D-loads. The D-load concept provides strength classification of pipe independent of pipe diameter. For reinforced circular pipe the three-edge-bearing test load in pounds per linear foot equals D-load times inside diameter in feet. For arch, horizontal elliptical and vertical elliptical pipe the three-edge bearing test load in pounds per linear foot equals D-load times nominal inside span in feet.

The required three-edge-bearing strength of non-reinforced concrete pipe is expressed in pounds per linear foot, not as a D-load, and is computed by the equation:

$$
\begin{equation*}
\text { T.E.B }=\left[\left(\frac{W_{E}+W_{F}}{B_{f}}\right)+\frac{W_{L}}{B_{f L L}}\right] \times \text { F.S. } \tag{4.23}
\end{equation*}
$$

The required three-edge bearing strength of circular reinforced concrete pipe is expressed as D-load and is computed by the equation:

$$
\begin{equation*}
\text { D-load }=\left[\left(\frac{W_{E}+W_{F}}{B_{f}}\right)+\frac{W_{L}}{B_{f L L L}}\right] \times \frac{\text { F.S. }}{D} \tag{4.24}
\end{equation*}
$$

The determination of required strength of elliptical and arch concrete pipe is computed by the equation:

D-load $=\left[\left(\frac{W_{E}+W_{F}}{B_{f}}\right)+\frac{W_{L}}{B_{f L L}}\right] \times \frac{\text { F.S. }}{S}$
where:
$S=$ inside horizontal span of pipe, ft.
When an HS20 truck live loading is applied to the pipe, use the live load bedding factor, $\mathrm{B}_{\text {tul }}$, as indicated in Equations 4.23-4.25, unless the earth load bedding factor, B_{f}, is of lesser value in which case, use the lower B_{f} value in place of $\mathrm{B}_{\mathrm{tLL}}$. For example, with a Type 4 Standard Installation of a 48 inch diameter pipe under 1.0 feet of fill, the factors used would be $B_{f}=1.7$ and $B_{f i L}=1.5$; but under 2.5 feet or greater fill, the factors used would be $B_{f}=1.7$ and $B_{f L},=1.7$ rather than 2.2. For trench installations with trench widths less than transition width, $\mathrm{B}_{\text {fLL }}$ would be compared to the variable trench bedding factor, B_{ft}. Although their loads are generally less concentrated, the live load bedding factor may be conservatively used for aircraft and railroad loadings.

The use of the six-step indirect design method is illustrated by examples on the following pages.

EXAMPLE PROBLEMS

EXAMPLE PROBLEMS

EXAMPLE 4-1
 Trench Installation

Given: A 48 inch circular pipe is to be installed in a 7 foot wide trench with 10 feet of cover over the top of the pipe. The pipe will be backfilled with sand and gravel weighing 110 pounds per cubic foot. Assume a Type 4 Installation.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

To determine the earth load, we must first determine if the installation is behaving as a trench installation or an embankment installation.
Since we are not told what the existing in-situ material is, conservatively assume a $\mathrm{K} \mu^{\prime}$ value between the existing soil and backfill of 0.150 .

From Table 23, The transition width for a 48 inch diameter pipe with a $K \mu^{\prime}$ value of 0.150 under 10 feet of fill is:
$B_{d t}=8.5$ feet
Transition width is greater than the actual trench width, therefore the installation will act as a trench. Use Equations 4.3 and 4.4 to determine the soil load.
$w=110$ pounds per cubic foot
$\mathrm{H}=10$ feet
$B_{d}=7$ feet
$K \mu^{\prime}=0.150$
$D_{0}=\frac{48+2(5)}{12} \quad \begin{aligned} & \text { Note: Wall thickness for a } 48 \text { inch inside diameter } \\ & \text { pipe with a B wall is } 5 \text {-inches per ASTM C } 76 .\end{aligned}$
$D_{0}=4.83$ feet

The value of Cd can be obtained from Figure 214, or calculated using Equation 4.4.
$C_{d}=\frac{1-e^{-2(0.150)}\left(\frac{10}{7}\right)}{(2)(0.150)}$
$C_{d}=1.16$
$W_{d}=(1.16)(110)(7)^{2}+\frac{(4.83)^{2}(4-\pi)}{8}(110)$
Equation 4.4
$W_{d}=6,538$ pounds per linear foot
$W_{e}=W_{d} \quad W_{E}=6,538$ earth load in pounds per linear foot
Weight of Fluid, W_{F}, for a 48 ' pipe
$W_{F}=\gamma_{w} \times \mathrm{A}$
$\mathrm{W}_{\mathrm{F}}=62.4 \times \frac{\pi\left(\mathrm{D}_{1}\right)^{2}}{4}=62.4 \times \frac{\pi(4)^{2}}{4}$
$W_{F}=784.1$ pounds per linear foot
2. Determination of Live Load $\left(\mathrm{W}_{\mathrm{L}}\right)$

From Table 42, live load is negligible at a depth of 10 feet.

3. Selection of Bedding

Because of the narrow trench, good compaction of the soil on the sides of the pipe would be difficult, although not impossible. Therefore a Type 4 Installation was assumed.
4. Determination of Bedding Factor, (B_{fv})

The pipe is installed in a trench that is less than transition width.
Therefore, Equation 4.24 must be used to determine the variable bedding factor.
$B_{c}=D_{0} \quad B_{c}=4.83$ outside diameter of pipe in feet
$B_{d}=7$ width of trench in feet
$\mathrm{B}_{\mathrm{dt}}=8.5$ transition width in feet
$\mathrm{B}_{\mathrm{fe}}=1.7$ embankment bedding factor
$\mathrm{B}_{\mathrm{if}}=1.5$ minimum bedding factor
$\mathrm{B}_{\mathrm{fv}}=\frac{(1.7-1.5)(7-4.83)}{8.5-4.83}+1.5$
Equation 4.24
$\mathrm{B}_{\mathrm{iv}}=1.62$
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.

6. Selection of Pipe Strength

The D-load is given by Equation 4.26
$W_{E}=6,538$ earth load in pounds per linear foot
$\mathrm{W}_{\mathrm{F}}=784$ fluid load in pounds per linear foot
$\mathrm{W}_{\mathrm{L}}=0$ live load is negligible
$B_{f}=B_{f v} \quad B_{f}=1.62$ earth load bedding factor
$B_{f L L}=N / A$ live load bedding factor is not applicable
D $=4$ inside diameter of pipe in feet
$D_{0.01}=\left(\frac{6,538+784.1}{1.62}\right)\left(\frac{1}{4}\right)$
Equation 4.26
$D_{0.01}=1,130$ pounds per linear foot per foot of diameter

Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 1,130 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-2
 Positive Projection Embankment Installation

Given: A 48 inch circular pipe is to be installed in a positive projecting embankment condition using a Type 1 installation. The pipe will be covered with 35 feet of 120 pounds per cubic foot overfill.

Find: The required pipe strength in terms of 0.01 inch D-load

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

Per the given information, the installation behaves as a positive projecting embankment. Therefore, use Equation 4.2 to determine the soil prism load and multiply it by the appropriate vertical arching factor.
$D_{0}=\frac{48+2(5)}{12} \quad \begin{aligned} & \text { Note: The wall thickness for a 48-inch } \\ & \text { pipe with a B wall is 5-inches per ASTM C76. }\end{aligned}$
$D_{0}=4.83$ outside diameter of pipe in feet
$\mathrm{w}=120$ unit weight of soil in pounds per cubic foot
$\mathrm{H}=35$ height of cover in feet
$\mathrm{PL}=120\left[35+\frac{4.83(4-\pi)}{8}\right] 4.83$
Equation 4.2
$P L=20,586$ pounds per linear foot

Immediately listed below Equation 4.2 are the vertical arching factors (VAFs) for the four types of Standard Installations. Using a VAF of 1.35 for a Type 1 Installation, the earth load is:
$W_{E}=1.35 \times 20,586$
$W_{E}=27,791$ pounds per linear foot
Equation 4.1

Weight of Fluid, W_{F}, for a 48" pipe
$\mathrm{W}_{\mathrm{F}}=\gamma_{\mathrm{w}} \times \mathrm{A}$
$W_{F}=62.4 \times \frac{\pi\left(D_{1}\right)^{2}}{4}=62.4 \times \frac{\pi(4)^{2}}{4}$
$W_{F}=784.1$ pounds per linear foot
2. Determination of Live Load $\left(W_{L}\right)$

From Table 42, live load is negligible at a depth of 35 feet.

3. Selection of Bedding

A Type 1 Installation will be used for this example
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$

The embankment bedding factor for a Type 1 Installation may be interpolated from Illustration 4.21
$\mathrm{B}_{\mathrm{fe} 36}=4.0$
$\mathrm{B}_{\mathrm{fe} 72}=3.8$
$\mathrm{B}_{\mathrm{fe} 48}=\left(\frac{72-48}{72-36}\right)(4.0-3.8)+3.8$
$\mathrm{B}_{\mathrm{fe} 48}=3.93$
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.

6. Selection of Pipe Strength
 The D-load is given by Equation 4.26

$\mathrm{W}_{\mathrm{E}}=27,791$ earth load in pounds per linear foot
$\mathrm{W}_{\mathrm{F}}=784$ fluid load in pounds per linear foot
$\mathrm{W}_{\mathrm{L}}=0$ live load is negligible
$B_{f}=B_{f e} \quad B_{f}=3.93$ earth load bedding factor
$\mathrm{B}_{\mathrm{fLL}}=\mathrm{N} / \mathrm{A}$ live load bedding factor is not applicable
$D=4$ inside diameter of pipe in feet
$D_{0.01}=\left(\frac{27,791+784.1}{3.93}\right)\left(\frac{1.0}{4}\right)$
Equation 4.26
$D_{0.01}=1,818$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test for the 0.01 inch crack of 1,818 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-3 Negative Projection Embankment Installation

Given: A 72 inch circular pipe is to be installed in a negative projecting embankment condition in ordinary soil. The pipe will be covered with 35 feet of 120 pounds per cubic foot overfill. A 10 foot trench width will be constructed with a 5 foot depth from the top of the pipe to the natural ground surface.

Find: The required pipe strength in terms of 0.01 inch D-load

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

A settlement ratio must first be assumed. The negative projection ratio of this installation is the height of soil from the top of the pipe to the top of the natural ground $(5 \mathrm{ft})$ divided by the trench width (10 ft). Therefore the negative projection ratio of this installation is $p^{\prime}=0.5$. From Table 40 , for a negative projection ratio of $p^{\prime}=0.5$, the design value of the settlement ratio is -0.1 .

Enter Figure 195 on the horizontal scale at $\mathrm{H}=35$ feet. Proceed vertically until the line representing $B_{d}=10$ feet is intersected. At this
point the vertical scale shows the fill load to be 27,500 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 20 percent for 120 pound material since Figure 195 shows values for 100 pound material.
$\mathrm{W}_{\mathrm{n}}=1.20 \times 27,500$
$W_{n}=33,000$ pounds per linear foot
$W_{E}=W_{n} \quad W_{E}=33,000$ earth load in pounds per linear foot
Weight of Fluid, W_{F}, for a 72 " pipe
$W_{F}=\gamma_{w} \times \mathrm{A}$
$W_{F}=62.4 \times \frac{\pi\left(D_{1}\right)^{2}}{4}=62.4 \times \frac{\pi(6)^{2}}{4}$
$W_{F}=1764$ pounds per linear foot
2. Determination of Live Load $\left(\mathrm{W}_{\mathrm{L}}\right)$

From Table 42, live load is negligible at a depth of 35 feet.

3. Selection of Bedding

No specific bedding was given. Assuming the contractor will put minimal effort into compacting the soil, a Type 3 Installation is chosen.
4. Determination of Bedding Factor, (B_{fv})

The variable bedding factor will be determined using Equation 4.24 in the same fashion as if the pipe were installed in a trench.
$B_{c}=\frac{72+2(7)}{12} \quad \begin{aligned} & \text { Note: The wall thickness for a 72-inch pipe with } \\ & \text { a B wall is } 7 \text {-inches per ASTM C 76. }\end{aligned}$
$B_{c}=7.17$ outside diameter of pipe in feet
$B_{d}=10$ trench width in feet
$B_{d t}=14.1$ transition width for a Type 3 Installation with $K \mu^{\prime}=0.150$
$\mathrm{B}_{\mathrm{fe}}=2.2$ embankment bedding factor (taken from Illustration 4.21)
$\mathrm{B}_{\mathrm{fo}}=1.7$ minimum bedding factor (taken from Illustration 4.22)
$\mathrm{B}_{\mathrm{fv}}=\frac{(2.2-1.7)(10-7.17)}{14.1-7.17}+1.7$
Equation 4.24
$\mathrm{B}_{\mathrm{fv}}=1.9$
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength
The D-load is given by Equation 4.26
$W_{E}=33,000$ earth load in pounds per linear foot
$W_{F}=1,764$ fluid load in pounds per linear foot
$\mathrm{W}_{\mathrm{L}}=0$ live load is negligible
$B_{f}=B_{f v} \quad B_{f}=1.9$ earth load bedding factor
$B_{\text {fLL }}=N / A$ live load bedding factor is not applicable
D $=6$ inside diameter of pipe in feet
$\mathrm{D}_{0.01}=\left(\frac{33,000+1,764}{1.9}\right)\left(\frac{1.0}{6}\right)$
Equation 4.26
$D_{0.01}=3,050$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 3,050 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-4
 Jacked or Tunneled Installation

Given: A 48 inch circular pipe is to be installed by the jacking method of construction with a height of cover over the top of the pipe of 40 feet. The pipe will be jacked through ordinary clay material weighing 110 pounds per cubic foot throughout its entire length. The limit of excavation will be 5 feet.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

A coefficient of cohesion value must first be assumed. In Table 41, values of the coefficient of cohesion from 40 to 1,000 are given for clay. A conservative value of 100 pounds per square foot will be used.

Enter Figure 151, Ordinary Clay, and project a horizontal line from H $=40$ feet on the vertical scale and a vertical line from $B_{t}=5$ feet on the horizontal scale. At the intersection of these two lines interpolate between the curved lines for a value of 9,500 pounds per linear foot, which accounts for earth load without cohesion. Decrease the load in proportion to $110 / 120$ for 110 pound material since Figure 151 shows values for 120 pound material.
$W_{t}=\frac{110}{120} \times 9,500$
$W_{t}=8,708$ pounds per linear foot

Enter Figure 152, Ordinary Clay, and project a horizontal line from H $=40$ feet on the vertical scale and a vertical line from $B_{t}=5$ feet on the horizontal scale. At the intersection of these two lines interpolate between the curved lines for a value of 33 , which accounts for the cohesion of the soil. Multiply this value by the coefficient of cohesion, $c=100$, and subtract the product from the 8,708 value obtained from figure 151.
$\mathrm{W}_{\mathrm{t}}=8,708-100$ (33)
$\mathrm{W}_{\mathrm{t}}=5,408$ pounds per linear foot
$W_{E}=W_{t} \quad W_{E}=5,408$ earth load in pounds per linear foot
Note: If the soil properties are not consistent, or sufficient information on the soil is not available, cohesion may be neglected and a conservative value of $8,708 \mathrm{lbs} / \mathrm{ft}$ used.

Weight of Fluid, W_{F}, for a 48 " pipe
$W_{F}=\gamma_{w} \times \mathrm{A}$
$\mathrm{W}_{\mathrm{F}}=62.4 \times \frac{\pi\left(\mathrm{D}_{1}\right)^{2}}{4}=62.4 \times \frac{\pi(4)^{2}}{4}$
$W_{F}=784.1$ pounds per linear foot
2. Determination of Live Load $\left(\mathrm{W}_{\mathrm{L}}\right)$

From Table 42, live load is negligible at 40 feet.
3. Selection of Bedding

The annular space between the pipe and limit of excavation will be filled with grout.
4. Determination of Bedding Factor (B_{fv})

Since the space between the pipe and the bore will be filled with grout, there will be positive contact of bedding around the periphery of the pipe. Because of this beneficial bedding condition, little flexural stress should be induced in the pipe wall. A conservative variable bedding factor of 3.0 will be used.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by Equation 4.26.
$W_{E}=5,408$ earth load in pounds per linear foot
$\mathrm{W}_{\mathrm{F}}=784$ fluid load in pounds per linear foot
$\mathrm{W}_{\mathrm{L}}=0$ live load is negligible
$B_{f}=B_{f v} \quad B_{f}=3.0$ earth load bedding factor
$B_{\text {fLL }}=N / A$ live load bedding factor is not applicable
D $=4$ inside diameter of pipe in feet
$D_{0.01}=\left(\frac{5,408+784.1}{3.0}\right)\left(\frac{1.0}{4}\right)$
Equation 4.26
$D_{0.01}=516$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 516 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-5
 Wide Trench Installation

Given: A 24 inch circular non reinforced concrete pipe is to be installed in a 5 foot wide trench with 10 feet of cover over the top of the pipe. The pipe will be backfilled with ordinary clay weighing 120 pounds per cubic foot.

Find: The required three-edge bearing test strength for nonreinforced pipe and the ultimate D-load for reinforced pipe.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

To determine the earth load, we must first determine if the installation is behaving as a trench installation or an embankment installation. Assume that since the pipe is being backfilled with clay that they are using in-situ soil for backfill. Assume a $K \mu^{\prime}$ value between the existing soil and backfill of 0.130 . We will assume a Type 4 Installation for this example.

From Table 17, the transition width for a 24 inch diameter pipe with a $K \mu^{\prime}$ value of 0.130 under 10 feet of fill is:
$\mathrm{B}_{\mathrm{dt}}=4.8$
Since the transition width is less than the trench width, this installation will act as an embankment. Therefore calculate the prism load per

Equation 4.2 and multiply it by the appropriate vertical arching factor (VAF).
$\mathrm{D}_{0}=\frac{24+2(3)}{12} \quad \begin{aligned} & \text { Note: The wall thickness for a } 24 \text {-inch } \\ & \text { pipe with a B wall is } 3 \text {-inches per ASTM C76. }\end{aligned}$
$D_{0}=2.5$ outside diameter of pipe in feet
w = 120 unit weight of soil in pounds per cubic foot
$\mathrm{H}=10$ height of cover in feet
$\mathrm{PL}=120\left[10+\frac{2.5(4-\pi)}{8}\right] 2.5$
Equation 4.2
$\mathrm{PL}=3,080$ pounds per linear foot
Immediately listed below Equation 4.2 are the vertical arching factors (VAF) for the four types of Standard Installations. Using a VAF of 1.45 for a Type 4 Installation, the earth load is:
$W_{E}=1.45 \times 3,080$
$W_{E}=4,466$ pounds per linear foot
Equation 4.1

Weight of Fluid, W_{F}, for a 24 " pipe
$W_{F}=\gamma_{w} \times A$
$W_{F}=62.4 \times \frac{\pi\left(D_{1}\right)^{2}}{4}=62.4 \times \frac{\pi(2)^{2}}{4}$
$W_{F}=196$ pounds per linear foot
2. Determination of Live Load (W_{L})

From Table 42, live load is negligible at a depth of 10 feet.

3. Selection of Bedding

A Type 4 Installation has been chosen for this example
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$

Since this installation behaves as an embankment, an embankment bedding factor will be chosen. From Illustration 4.21, the embankment bedding factor for a 24 inch pipe installed in a Type 4 Installation is:
$\mathrm{B}_{\mathrm{fe}}=1.7$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.

6. Selection of Pipe Strength
 The D-load is given by Equation 4.26.

$W_{E}=4,466$ earth load in pounds per linear foot
$W_{F}=196$ fluid load in pounds per linear foot
$\mathrm{W}_{\mathrm{L}}=0$ live load is negligible
$B_{f}=B_{f e} B_{f}=1.7$ earth load bedding factor
$B_{f L L}=N / A$ live load bedding factor is not applicable
D = 2 inside diameter of pipe in feet
The ultimate three-edge bearing strength for nonreinforced concrete pipe is given by Equation 4.25
$\mathrm{TEB}=\left(\frac{4,466+196}{1.7}\right) 1.5$
Equation 4.25
TEB $=4,114$ pounds per linear foot
The D-load for reinforced concrete pipe is given by Equation 4.26.
$D_{0.01}=\left(\frac{4,466+196}{1.7}\right)\left(\frac{1.0}{2}\right)$
Equation 4.26
$D_{0.01}=1,371$ pounds per linear foot per foot of diameter
Answer: A nonreinforced pipe which would withstand a minimum three-edge bearing test load of 4,114 pounds per linear foot would be required.

EXAMPLE 4-6
 Positive Projection Embankment Installation Vertical Elliptical Pipe

Given: A 76 inch x 48 inch vertical elliptical pipe is to be installed in a positive projection embankment condition in ordinary soil. The pipe will be covered with 50 feet of 120 pounds per cubic foot overfill.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

Note: The Standard Installations were initially developed for circular pipe, and their benefit has not yet been established for elliptical and arch pipe. Therefore, the traditional Marston/Spangler design method using B and C beddings is still conservatively applied for these shapes.

A settlement ratio must first be assumed. In Table 40, values of settlement ratio from +0.5 to +0.8 are given for positive projecting installation on a foundation of ordinary soil. A value of 0.7 will be used. The product of the settlement ratio and the projection ratio will be 0.49 ($r_{s \mathrm{sd}} \mathrm{p}$ approximately 0.5).

Enter Figure 182 on the horizontal scale at $\mathrm{H}=50$ feet. Proceed vertically until the line representing $R \times S=76^{\prime \prime} \times 48^{\prime \prime}$ is intersected. At this point the vertical scale shows the fill load to be 41,000 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 20 percent for 120 pound material.
$\mathrm{W}_{\mathrm{c}}=1.20 \times 41,000$
$W_{c}=49,200$ per linear foot
$W_{E}=W_{c} \quad W_{E}=49,200$ earth load in pounds per linear foot
Weight of Fluid, W_{F}, for a 76 " $\times 48^{\prime \prime}$ pipe
$W_{F}=\gamma_{w} \times \mathrm{A}$

$$
W_{F}=62.4 \times \frac{\pi 6.33 \times 4}{4}
$$

$\mathrm{W}_{\mathrm{F}}=1241$ pounds per linear foot
2. Determination of Live Load $\left(\mathrm{W}_{\llcorner }\right)$

From Table 44, live load is negligible at a depth of 50 feet.
3. Selection of Bedding

Due to the high fill height you will more than likely want good support around the pipe, a Class B bedding will be assumed for this example.
4. Determination of Bedding Factor $\left(\mathrm{B}_{\mathrm{fe}}\right)$

First determine the $\mathrm{H} / \mathrm{B}_{\mathrm{c}}$ ratio.
$\mathrm{H}=50$
$B_{c}=\frac{48+2(6.5)}{12} \quad \begin{aligned} & \text { Note: the wall thickness for a } 72 " \mathrm{x} \times 48^{\prime \prime} \\ & \text { elliptical pipe is } 6.5 " \text { per ASTM C507. }\end{aligned}$
$B_{c}=5.08$ outside diameter of pipe in feet
$\mathrm{H} / \mathrm{B}_{\mathrm{c}}=9.84$
From Table 59, for an H / Bc ratio of $9.84, \mathrm{r}_{\text {sdp }}$ value of $0.5, \mathrm{p}$ value of 0.7 , and a Class B bedding, an embankment bedding factor of 2.71 is obtained.
$\mathrm{B}_{\mathrm{fe}}=2.71$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by Equation 4.27
$W_{E}=49,200$ earth load in pounds per linear foot
$W_{F}=1,242$ fluid load in pounds per linear foot
$W_{L}=0$ live load is negligible
$B_{f}=B_{f e} B_{f}=2.71$ earth load bedding factor
$B_{f L L}=N / A$ live load bedding factor is not applicable
$S=4$ inside diameter of pipe in feet
$D_{0.01}=\left(\frac{49,200+1,241}{2.71}\right)\left(\frac{1.0}{4}\right)$
Equation 4.27
$D_{0.01}=4,653$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 4,654 pounds per linear foot per foot of inside horizontal span would be required.

EXAMPLE 4-7 Highway Live Load

Given: A 24 inch circular pipe is to be installed in a positive projection embankment under an unsurfaced roadway and covered with 2.0 feet of 120 pounds per cubic foot backfill material.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

Per the given information, the installation behaves as a positive projecting embankment. Therefore, use Equation 4.2 to determine the soil prism load and multiply it by the appropriate vertical arching factor.
$D_{0}=\frac{24+2(3)}{12}$
Note: The wall thickness for a 24 -inch pipe with a B wall is 3 -inches per ASTM C76.
$D_{0}=2.5$ outside diameter of pipe in feet
$w=120$ unit weight of soil in pounds per cubic foot
$H=2$ height of cover in feet
$P L=120\left[2+\frac{2.5(4-\pi)}{8}\right] 2.5$
Equation 4.2
PL = 680 pounds per linear foot
Assume a Type 2 Standard Installation and use the appropriate vertical arching factor listed below Equation 4.2.

VAF $=1.4$
$\mathrm{W}_{\mathrm{E}}=1.40 \times 680$
$W_{E}=952$ pounds per linear foot
Equation 4.1

Weight of Fluid, W_{F}, for a 24 " pipe
$W_{F}=\gamma_{w} \times A$
$W_{F}=62.4 \times \frac{\pi(2)^{2}}{4}$
$W_{F}=196$ pounds per linear foot
2. Determination of Live Load $\left(W_{L}\right)$

Since the pipe is being installed under an unsurfaced roadway with shallow cover, a truck loading based on AASHTO will be evaluated. From Table 42, for $D=24$ inches and $H=2.0$ feet, a live load of 1,780 pounds per linear foot is obtained. This live load value includes impact. $W_{L}=1,780$ pounds per linear foot

3. Selection of Bedding

A Type 2 Standard Installation will be used for this example.
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$
a.) Determination of Embankment Bedding Factor

From Illustration 4.21, the earth load bedding factor for a 24 inch pipe installed in a Type 2 positive projecting embankment condition is 3.0 .
$B_{f e}=3.0$
b.) Determination of Live Load Bedding Factor, $\left(\mathrm{B}_{\mathrm{fLL}}\right)$

From Illustration 4.24, the live load bedding factor for a 24 inch pipe under 2 feet of cover is 2.2.
$B_{f L L}=2.2$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by equation 4.26
$W_{E}=952$ earth load in pounds per linear foot
$W_{F}=196$ fluid load in pounds per linear foot
$W_{L}=1,780$ live load in pounds per linear foot
$B_{f} \quad=B_{f e} \quad B_{f}=3$ earth load bedding factor
$\mathrm{B}_{\mathrm{fLL}}=2.2$ live load bedding factor is not applicable
D $=2$ inside diameter of pipe in feet
$D_{0.01}=\left[\frac{952+196}{3.0}+\frac{1,780}{2.2}\right]\left(\frac{1.0}{2}\right)$
Equation 4.26
$D_{0.01}=596$ pounds per linear foot per foot of diameter

Answer: A pipe which would withstand a minimum three-edge bearing test for the 0.01 inch crack of 596 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-8
 Highway Live Load per AASHTO LRFD

Given: A 30-inch diameter, B wall, concrete pipe is to be installed as a storm drain under a flexible pavement and subjected to AASHTO highway loadings. The pipe will be installed in a 6 ft wide trench with a minimum of 2 feet of cover over the top of the pipe. The AASHTO LRFD Criteria will be used with Select Granular Soil and a Type 3 Installation.

Find: The maximum 0.01 " $D_{\text {load }}$ required of the pipe.

1. Determination of Earth Load (W_{E})

Per review of Table 19, the 6 ft . trench is wider than transition width.

Therefore, the earth load is equal to the soil prism load multiplied by the appropriate vertical arching factor.
$D_{0}=\frac{30+2(3.5)}{12} \quad \begin{aligned} & \text { Note: The wall thickness for a 30-inch } \\ & \text { pipe with a B wall is } 3.5 \text {-inches per ASTM C76. }\end{aligned}$
$D_{0}=3.08$ outside diameter of pipe in feet
$w=120$ unit weight of soil in pounds per cubic foot
$\mathrm{H}=2$ height of cover in feet
$\mathrm{PL}=120\left[2+\frac{3.08(4-\pi)}{8}\right] 3.08$
PL = 861 pounds per linear foot
Illustration 4.7 lists the vertical arching factors (VAFs) for the four types of Standard Installations. Using a VAF of 1.40 for a Type 3 Installation, the earth load is:
$\mathrm{W}_{\mathrm{E}}=1.40 \times 861$
Equation 4.1
$W_{E}=1,205$ pounds per linear foot
The weight of concrete pavement must be included also. Assuming 150 pounds per cubic foot unit weight of concrete, the total weight of soil and concrete is:
$W_{E}=1,205+150 \times 1.0 \times 3.08$
$W_{E}=1,655$ pounds per linear foot
Weight of Fluid, W_{F}, for a 30 " pipe
$W_{F}=\gamma_{w} \times \mathrm{A}$
$W_{F}=62.4 \times \frac{\pi(2.5)^{2}}{4}$
$W_{F}=306$ pounds per linear foot
2. Review project data.

A 30-inch diameter, B wall, circular concrete pipe has a wall thickness of 3.5 inches, per ASTM C76 therefore
$\mathrm{B}_{\mathrm{c}}=\frac{30+2(3.5)}{12}$
$\mathrm{B}_{\mathrm{c}}=3.08$
And R_{0}, the outside height of the pipe, is 3.08 feet. Height of earth cover is 2 feet. Use AASHTO LRFD Criteria with Select Granular Soil Fill.
3. Calculate average pressure intensity of the live load on the plane at the outside top of the pipe.
From Illustration 4.12, the critical load, P , is 16,000 pounds from an HS 20 single dual wheel, and the Spread Area is:

```
A = (Spread a)(Spread b)
A = (1.67+1.15x2)(0.83+1.15x2)
A = (3.97)(3.13)
A = 12.4 square feet
I.M. = 33(1.0-0.125H)/100
I.M. = 0.2475 (24.75%)
w = P(1+IM)/A
w = 16,000(1+0.2475)/12.4
w = 1,610 lb/ft'
```

4. Calculate total live load acting on the pipe.
$W_{T}=\left(w+L_{L}\right) L S_{L}$
Assuming truck travel transverse to pipe centerline.

$\mathrm{L}_{\mathrm{L}} \quad=64$
$\mathrm{L} \quad=$ Spread $\mathrm{a}=3.97$ feet
Spread b $=3.13$ feet
$B_{c}=3.08$ feet, which is less than Spread b, therefore
$\begin{array}{ll}\mathrm{S}_{L_{L}} & =3.08 \text { feet } \\ \mathrm{W}_{\mathrm{T}} & =(1,610+64) 3.97 \times 3.08=20,500 \text { pounds }\end{array}$
Assuming truck travel parallel to pipe centerline.
$\mathrm{L}_{\mathrm{L}}=64$
Spread $\mathrm{a}=3.97$ feet
$\mathrm{L} \quad=$ Spread $\mathrm{b}=3.13$ feet
$B_{c}=3.08$ feet, which is less than Spread a, therefore
$S_{L} \quad=3.08$ feet
$\mathrm{W}_{\mathrm{T}}=(1,610+64) 3.08 \times 3.13=16,100$ pounds
W_{T} Maximum = 20,500 pounds; and truck travel is transverse to pipe centerline
5. Calculate live load on pipe in pounds per linear foot, $\left(W_{\mathrm{L}}\right)$
$\mathrm{R}_{\mathrm{o}}=3.08$ feet
$\mathrm{L}_{\mathrm{e}}=\mathrm{L}+1.75$ (3/4Ro)
$\mathrm{L}_{\mathrm{e}}=3.97+1.75(.75 \times 3.08)=8.01$ feet
$\mathrm{W}_{\mathrm{L}}=\mathrm{W}_{\mathrm{T}} / \mathrm{L}_{\mathrm{L}}$
$W_{L}^{L}=20,500 / 8.01=2,559$ pounds per linear foot
The pipe should withstand a maximum live load of 2,559 pounds per linear foot.
6. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$
a) Determination of Embankment Bedding Factor

The embankment bedding factor for a Type 3 Installation may be interpolated from Illustration 4.21
$\mathrm{B}_{\text {fe24 }}=2.4$
$\mathrm{B}_{\mathrm{f} 366}=2.3$
$\mathrm{B}_{\text {fe30 }}=\frac{36-30}{34-24}(2.4-2.3)+2.3$
$\mathrm{B}_{\mathrm{fe} 30}=2.3$
b) Determination of Live Load Bedding Factor

From Illustration 4.24, the live load bedding factor for a 30 inch pipe under 3 feet of cover (one foot of pavement and two feet of soil) can be interpolated
$\mathrm{B}_{\mathrm{fLL} 24}=2.4$
$\mathrm{B}_{\text {fLL36 }}=2.2$
Therefore $\mathrm{B}_{\mathrm{fL} 3}$ 30 $=2.3$
7. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
8 Selection of Pipe Strength
$W_{E}=1,655$ earth load in pounds per linear foot
$W_{F}=307$ fluid load in pounds per linear foot
$W_{L}=2,559$ live load in pounds per linear foot
$B_{f}=B_{f e} \quad B_{f}=2.35$ earth load bedding factor
$B_{f L L}=2.3$ live load bedding factor is not applicable
D $=2.5$ inside diameter of pipe in feet
$D_{0.01}=\left[\frac{1,655+306}{2.35}+\frac{2,559}{2.3}\right]\left(\frac{1.0}{2.5}\right)$
Equation 4.26
$D_{0.01}=779$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test for the 0.01 inch crack of 779 pounds per linear foot per foot of inside diameter would be required.

Given: A 12 inch circular pipe is to be installed in a narrow trench, $B_{d}=3 f t$ under a 12 inch thick concrete airfield pavement and subject to heavy commercial aircraft loading. The pipe will be covered with 1.0 foot (measured from top of pipe to bottom of pavement slab) of sand and gravel material weighing 120 pounds per cubic foot.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

Per review of Table 13, the 3 ft . trench is wider than transition width. Therefore, the earth load is equal to the soil prism load multiplied by the appropriate vertical arching factor.
$D_{0}=\frac{12+2(2)}{12} \quad \begin{aligned} & \text { Note: The wall thickness for a 12-inch } \\ & \text { pipe with a B wall is 2-inches per ASTM C76. }\end{aligned}$
$D_{0}=1.33$ outside diameter of pipe in feet
$w=120$ unit weight of soil in pounds per cubic foot
$H=1$ height of cover in feet
$\mathrm{PL}=120\left[1+\frac{1.33(4-\pi)}{8}\right] 1.33$
Equation 4.2
PL = 182 pounds per linear foot
Immediately listed below Equation 4.2 are the vertical arching factors (VAFs) for the four types of Standard Installations. Using a VAF of 1.40 for a Type 2 Installation, the earth load is:
$W_{E}=1.40 \times 182$
Equation 4.1
$\mathrm{W}_{\mathrm{E}}=255$ pounds per linear foot
The weight of concrete pavement must be included also. Assuming 150 pounds per cubic foot unit weight of concrete, the total weight of soil and concrete is:
$W_{E}=255+150 \times 1.0 \times 1.33$
$W_{E}=455$ pounds per linear foot

Weight of Fluid, W_{F}, for a 12 " pipe
$\mathrm{W}_{\mathrm{F}}=\gamma_{\mathrm{w}} \times \mathrm{A}$
$\mathrm{W}_{\mathrm{F}}=62.4 \times \frac{\pi(1)^{2}}{4}$
$W_{F}=49$ pounds per linear foot
2. Determination of Live Load $\left(W_{L}\right)$

It would first be necessary to determine the bearing value of the backfill and/or subgrade. A modulus of subgrade reaction, $\mathrm{k}=300$ pounds per cubic inch will be assumed for this example. This value is used in Table 53A and represents a moderately compacted granular material, which is in line with the Type 2 Installation we are using.

Based on the number of undercarriages, landing gear configurations and gross weights of existing and proposed future aircrafts, the Concorde is a reasonable commercial aircraft design loading for pipe placed under airfields. From Table 53A, for $\mathrm{D}=12$ inches and $\mathrm{H}=1.0$ foot, a live load of 1,892 pounds per linear foot is obtained.
$W_{L}=1892$ pounds per linear foot
3. Selection of Bedding

Since this installation is under an airfield, a relatively good installation is required, therefore use a Type 2 Installation.
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$
a.) Determination of Embankment Bedding Factor

From Illustration 4.21, the embankment bedding factor for a 12 inch pipe installed in a positive projecting embankment condition is 3.2.

$$
B_{f e}=3.2
$$

b.) Determination of Live Load Bedding Factor

From Illustration 4.24, the live load bedding factor for a 12 inch pipe under 2 feet of cover (one foot of pavement and one foot of soil) is 2.2.

$$
B_{f L L}=2.2
$$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.

6. Selection of Pipe Strength

 The D-load is given by Equation 4.26$W_{E}=455$ earth load in pounds per linear foot $W_{F}=49$ fluid load in pounds per linear foot $W_{\mathrm{L}}=1,892$ live load in pounds per linear foot $\mathrm{B}_{\mathrm{f}}=\mathrm{B}_{\mathrm{fe}} \quad \mathrm{B}_{\mathrm{f}}=3.2$ earth load bedding factor $\mathrm{B}_{\mathrm{fLL}}=2.2$ live load bedding factor is not applicable
D $=1$ inside diameter of pipe in feet
$D_{0.01}=\left\lceil\frac{455+49}{3.2}+\frac{1,892}{2.2}\right\rceil\left(\frac{1.0}{1.0}\right)$
Equation 4.26

Answer: A pipe which would withstand a minimum three-edge bearing test for the 0.01 inch crack of 1,018 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE 4-10 Aircraft Live Load Rigid Pavement

Given: A 68 inch x 106 inch horizontal elliptical pipe is to be installed in a positive projecting embankment condition under a 7 inch thick concrete airfield pavement and subject to two 60,000 pound wheel loads spaced 20 feet, center to center. The pipe will be covered with 3-feet (measured from top of pipe to bottom of pavement slab) of sand and gravel material weighing 120 pounds per cubic foot.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

Note: The Standard Installations were initially developed for circular
pipe, and their benefit has not yet been established for elliptical and arch pipe. Therefore, the traditional Marston/Spangler design method using B and C beddings is still conservatively applied for these shapes.

A settlement ratio must first be assumed. In Table 40, values of settlement ratio from +0.5 to +0.8 are given for positive projecting installations on a foundation of ordinary soil. A value of 0.7 will be used. The product of the settlement ratio and the projection ratio will be 0.49 ($\mathrm{r}_{\mathrm{sd}} \mathrm{p}$ approximately 0.5).

Enter Figure 187 on the horizontal scale at $\mathrm{H}=3 \mathrm{ft}$. Proceed vertically until the line representing $R \times S=68^{\prime \prime} \times 106^{\prime \prime}$ is intersected. At this point the vertical scale shows the fill load to be 3,400 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 20 percent for 120 pound material.
$\mathrm{W}_{\mathrm{d}}=3,400 \times 1.2$
$W_{d}=4,080$ pounds per linear foot
outside span of pipe is:
$\mathrm{B}_{\mathrm{c}}=106+2(8.5)$ Note: The wall thickness for a 68 "x106" ellipitical 12 pipe is 8.5 -inches per ASTM C76.
$\mathrm{B}_{\mathrm{c}}=10.25$ feet
Assuming 150 pounds per cubic foot concrete, the weight of the pavement is:
$\mathrm{W}_{\mathrm{p}}=150 \times 7 / 12 \times 10.25$
$W_{p}=897$ pounds per linear foot
$W_{E}=W_{d}+W_{p}$
$W_{E}=4,977$ pounds per linear foot
Weight of Fluid, W_{F}, for a 68" $\times 106$ " pipe
$\mathrm{W}_{\mathrm{F}}=\gamma \times \mathrm{A}$
$W_{F}=62.4 \times \frac{\pi(5.67 \times 8.83)}{4}$
$W_{F}=2454$ pounds per linear foot

2. Determination of Live Load $\left(W_{L}\right)$

Assuming a modulus of subgrade reaction of $\mathrm{k}=300$ pounds per cubic inch and a pavement thickness of $h=7$ inches, a radius of stiffness of 24.99 inches (2.08 feet) is obtained from Table 52. The wheel spacing in terms of the radius of stiffness is $20 / 2.08=9.6 R_{s}$, therefore the maximum live load on the pipe will occur when one wheel is directly over the centerline of the pipe and the second wheel disregarded. The pressure intensity on the pipe is given by Equation 4.15:
$P_{(X, H)}=\frac{C \times P}{R_{s}{ }^{2}}$

The pressure coefficient (C) is obtained from Table 46 at $\mathrm{x}=0$ and $\mathrm{H}=3$ feet.

For $x / R_{s}=0$ and $H / R_{s}=3 / 2.08=1.44, C=0.068$ by interpolation between $H / R_{s}=1.2$ and $H / R_{s}=1.6$ in Table 46.
$p_{1}=\frac{(0.068)(60,000)}{(2.08)^{2}}$
Equation 4.15
$p_{1}=943$ pounds per square foot
In a similar manner pressure intensities are calculated at convenient increments across the width of the pipe. The pressure coefficients and corresponding pressures in pounds per square foot are listed in the accompanying table.

	$\mathrm{x} / \mathrm{R}_{\mathrm{s}}$											
Oint Pressure	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8				
Coefficient C	0.068	0.064	0.058	0.050	0.041	0.031	0.022	0.015				
Pressure psf	943	887	804	693	568	430	305	208				

For convenience of computing the load in pounds per linear foot, the pressure distribution can be broken down into two components; a uniform load and a parabolic load.

The uniform load occurs where the minimum load is applied to the pipe at:
$\frac{x}{R_{s}}=\frac{\frac{1}{2} B_{c}}{R_{s}}=\frac{5.13}{2.08}$
$\frac{\mathrm{x}}{\mathrm{R}_{\mathrm{s}}}=2.5$
The pressure, p_{2}, is then interpolated between the points 2.4 and 2.8 from the chart x/R s_{s} above, and equal to 290 pounds per square foot.

The parabolic load (area of a parabola $=2 / 3 a b$, or in this case $2 / 3\left(p_{1}-\right.$ $\left.\mathrm{p}_{2}\right) \mathrm{B}_{\mathrm{c}}$ has a maximum pressure of 653 pounds per foot.

Therefore the total live load, $\left(\mathrm{W}_{\mathrm{L}}\right)$ is equal to:
$W_{L}=p_{2} \times B_{c}+2 / 3\left(p_{1}-p_{2}\right) B_{c}$
$W_{L}=290 \times 10.25+2 / 3(943-290) 10.25$
$W_{L}=7,435$ pounds per linear foot
3. Selection of Bedding

A Class B bedding will be assumed for this example.
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$
a.) Determination of Embankment Bedding Factor

From Table 60, a Class B bedding with $\mathrm{p}=0.7, \mathrm{H} / \mathrm{B}_{\mathrm{c}}=3 \mathrm{ft} / 10.25$ $\mathrm{ft}=0.3$, and $\mathrm{r}_{\mathrm{sc}} \mathrm{p}=0.5$, an embankment bedding factor of 2.42 is obtained.
$\mathrm{B}_{\mathrm{fe}}=2.42$
b.) Determination of Live Load Bedding Factor

Live Load Bedding Factors are given in Illustration 4.24 for circular pipe. These factors can be applied to elliptical pipe by using the span of the pipe in place of diameter. The 106" span for the elliptical pipe in this example is very close to the 108" pipe diameter value in the table. Therefore, from Illustration 4.24, the live load bedding factor for a pipe with a span of 108 inches, buried under 3.5 feet of fill (3 feet of cover plus 7 inches of pavement is approx. 3.5 feet) is 1.7.

$$
\mathrm{B}_{\mathrm{fLL}}=1.7
$$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of pipe strength

The D-load given is given by Equation 4.27
$W_{E}=49,277$ earth load in pounds per linear foot
$W_{F}=2,453$ fluid load in pounds per linear foot
$W_{\mathrm{L}}=7,435$ live load in pounds per linear foot
$B_{f}=B_{f e} \quad B_{f}=2.42$ earth load bedding factor
$\mathrm{B}_{\text {fLL }}=1.7$ live load bedding factor
$S=106 / 12$
S $=8.83$ inside span of pipe in feet
$D_{0.01}=\left[\frac{4,977+2,454}{2.42}+\frac{7,435}{1.7}\right]\left(\frac{1.0}{8.83}\right)$
Equation 4.27
$D_{0.01}=843$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 843 pounds per linear foot per foot of inside horizontal span would be required.

EXAMPLE 4-11
Railroad Live Load

Given: A 48 inch circular pipe is to be installed under a railroad in a 9 foot wide trench. The pipe will be covered with 1.0 foot of 120 pounds per cubic foot overfill (measured from top of pipe to bottom of ties).

Find: The required pipe strength in terms of 0.01 inch crack D-load.

1. Determination of Earth Load $\left(\mathrm{W}_{\mathrm{E}}\right)$

The transition width tables do not have fill heights less than 5 ft .
With only one foot of cover, assume an embankment condition. An installation directly below the tracks such as this would probably require good granular soil well compacted around it to avoid settlement of the tracks. Therefore assume a Type 1 Installation and multiply the soil prism load by a vertical arching factor of 1.35 .
$D_{0}=48+2(5) \quad$ Note: The wall thickness for a 48-inch
$w=120$ unit weight of soil in pounds per cubic foot
$H=1$ height of cover in feet
$P L=120\left[1+\frac{4.83(4-\pi)}{8}\right] 4.83$
Equation 4.2
$P L=880$ pounds per linear foot
$P L=880$ pounds per linear foot
Immediately listed below Equation 4.2 are the vertical arching factors (VAFs) for the four types of Standard Installations. Using a VAF of 1.35 for a Type 1 Installation, the earth load is:
$W_{E}=1.35 \times 880$
$W_{E}=1,188$ pounds per linear foot

Weight of Fluid, W_{F}, for a 48" pipe
$\mathrm{W}_{\mathrm{F}}=\gamma_{\mathrm{w}} \times \mathrm{A}$
$W_{F}=62.4 \times \frac{\pi(4)^{2}}{4}$
$W_{F}=784.1$ pounds per linear foot
2. Determination of Live Load $\left(W_{L}\right)$

From Table 56, for a 48 inch diameter concrete pipe, $\mathrm{H}=1.0$ foot, and a Cooper E80 design load, a live load of 13,200 pounds per linear foot is obtained. This live load value includes impact.
$W_{L}=13,200$ pounds per linear foot
3. Selection of Bedding

Since the pipe is in shallow cover directly under the tracks, a Type 1 Installation will be used.
4. Determination of Bedding Factor, $\left(\mathrm{B}_{\mathrm{fe}}\right)$
a.) Determination of Embankment Bedding Factor

The embankment bedding factor for 48 inch diameter pipe in a Type 1 Installation may be interpolated from Illustration 4.21.

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{fe} 36}=4.0 \\
& \mathrm{~B}_{\mathrm{fe} 72}=3.8 \\
& \mathrm{~B}_{\mathrm{fe}}=\frac{72-48(4.0-3.8)}{72-36}+3.8 \\
& \mathrm{~B}_{\mathrm{fe}}=3.93
\end{aligned}
$$

b.) Determination of Live Load Bedding Factor

From Illustration 4.24, the live load bedding factor for a 48 inch pipe installed under 1 foot of cover is:
$B_{\text {fLL }}=1.5$

5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.

6. Selection of Pipe Strength
 The D-load is given by Equation 4.26

$W_{E}=1,188$ earth load in pounds per linear foot
$W_{F}=784$ fluid load in pounds per linear foot
$W_{L}=13,200$ live load in pounds per linear foot
$B_{f}=B_{f e} \quad B_{f}=3.93$ earth load bedding factor
$B_{f L L}=1.5$ live load bedding factor is applicable
D $=4$
$D_{0.01}=\left[\frac{1,188+784.1}{3.93}+\frac{13,200}{1.5}\right]\left(\frac{1.0}{4}\right)$
Equation 4.26
$D_{0.01}=2,325$ pounds per linear foot per foot of diameter
Answer: A pipe which would withstand a minimum three-edge bearing test for the 0.01 inch crack of 2,326 pounds per linear foot per foot of inside diameter would be required.

CHAPTER 5

SUPPLEMENTAL DATA

CIRCULAR CONCRETE PIPE

Illustration 5.2 includes tables of dimensions and approximate weights of most frequently used types of circular concrete pipe. Weights are based on concrete weighing 150 pounds per cubic foot. Concrete pipe may be produced which conforms to the requirements of the respective specifications but with increased wall thickness and different concrete density.

ELLIPTICAL CONCRETE PIPE

Elliptical pipe, shown in Illustration 5.1, installed with the major axis horizontal or vertical, represents two different products from the stand-point of structural strength, hydraulic characteristics and type of application. Illustration 5.3 includes the dimensions and approximate weights of elliptical concrete pipe.

Illustration 5.1 Typical Cross Sections of Horizontal Elliptical and Vertical Elliptical Pipe

HORIZONTAL ELLIPTICAL

VERTICAL ELLIPTICAL

Horizontal Elliptical (HE) Pipe. Horizontal elliptical concrete pipe is installed with the major axis horizontal and is extensively used for minimum cover conditions or where vertical clearance is limited by existing structures. It offers the hydraulic advantage of greater capacity for the same depth of flow than most other structures of equivalent water-way area. Under most embankment conditions, its wide span results in greater earth loadings for the same height of cover than for the equivalent size circular pipe and, at the same time, there is a reduction in effective lateral support due to the smaller vertical dimension of the section. Earth loadings are normally greater than for the equivalent circular pipe in

Illustration 5.2 Dimensions and Approximate Weights of Concrete Pipe

ASTM C 14-Nonreinforced Sewer and Culvert Pipe, Bell and Spigot Joint.												
CLASS 1									CLASS 2		CLASS 3	
Internal Diameter, inches	Minimum Wall Thickness, inches	Approx. Weight, pounds per foot	Minimum Wall Thickness, inches	Approx. Weight, pounds per foot	Minimum Whall Thickness, inches	Approx. Weight, pounds per foot						
4	$5 / 8$	9.5	$3 / 4$	13	$7 / 8$	15						
6	$5 / 8$	17	$3 / 4$	20	1	24						
8	$3 / 4$	27	$7 / 8$	31	$11 / 8$	36						
10	$7 / 8$	37	1	42	$11 / 4$	50						
12	1	50	$13 / 8$	68	$13 / 4$	90						
15	$11 / 4$	80	$15 / 8$	100	$17 / 8$	120						
18	$11 / 2$	110	2	160	$21 / 4$	170						
21	$13 / 4$	160	$21 / 4$	210	$23 / 4$	260						
24	$21 / 8$	200	3	320	$33 / 8$	350						
27	$31 / 4$	390	$33 / 4$	450	$33 / 4$	450						
30	$31 / 2$	450	$41 / 4$	540	$41 / 4$	540						
33	$33 / 4$	520	$41 / 2$	620	$41 / 2$	620						
36	4	580	$43 / 4$	700	$43 / 4$	700						

ASTM C 76-Reinforced Concrete Culvert, Storm Drain and Sewer Pipe,				
Bell and Spigot Joint.				

These tables are based on concrete weighing 150 pounds per cubic foot and will vary with heavier or lighter weight concrete.

Illustration 5.2 (Continued) Dimensions and Approximate Weights of Concrete Pipe

ASTM C 76-Reinforced Concrete Culvert, Storm Drain and Sewer Pipe,								
Tongue and Groove Joints								

Illustration 5.2 (Continued) Dimensions and Approximate Weights of Concrete Pipe

Large Sizes of Pipe Tongue and Groove Joint			
Internal Diameter Inches	Internal Diameter Feet	Wall Thickness Inches	Approximate Weight, pounds per foot
114	$91 / 2$	$91 / 2$	3840
120	10	10	4263
126	$101 / 2$	$101 / 2$	4690
132	11	11	5148
138	$111 / 2$	$111 / 2$	5627
144	12	12	6126
150	$121 / 2$	$121 / 2$	6647
156	13	13	7190
162	$131 / 2$	$131 / 2$	7754
168	14	14	8339
174	$141 / 2$	$141 / 2$	8945
180	15	15	9572

These tables are based on concrete weighing 150 pounds per cubic foot and will vary with heavier or lighter weight concrete.
the trench condition, since a greater trench width is usually required for HE pipe. For shallow cover, where live load requirements control the design, loading is almost identical to that for an equivalent size circular pipe with the same invert elevation.

Vertical Elliptical (VE) Pipe. Vertical elliptical concrete pipe is installed with the major axis vertical and is useful where minimum horizontal clearances are encountered or where unusual strength characteristics are desired. Hydraulically, it provides higher flushing velocities under minimum flow conditions and carries equal flow at a greater depth than equivalent HE or circular pipe. For trench conditions the smaller span requires less excavation than an equivalent size circular pipe and the pipe is subjected to less vertical earth load due to the narrower trench. The structural advantages of VE pipe are particularly applicable in the embankment condition where the greater height of the section increases the effective lateral support while the vertical load is reduced due to the smaller span.

CONCRETE ARCH PIPE

Arch pipe, as shown in Illustration 5.4, is useful in minimum cover situations or other conditions where vertical clearance problems are encountered. It offers the hydraulic advantage of greater capacity for the same depth of flow than most other structures of equivalent water-way area. Structural characteristics are

Illustration 5.3 Dimensions and Approximate Weights of Elliptical Concrete Pipe

ASTM C 507-Reinforced Concrete Elliptical Culvert,					
Storm Drain and Sewer Pipe					
Equivalent Round Size, inches	Minor Axis, inches	Major Axis, inches	Minimum Wall Thickness, inches	Water-Way Area, square feet	Approximate Weight, pounds per foot
18	14	23	$23 / 4$	1.8	195
24	19	30	$31 / 4$	3.3	300
27	22	34	$31 / 2$	4.1	365
30	24	38	$31 / 4$	5.1	430
33	27	42	$33 / 4$	6.3	475
36	29	45	$41 / 2$	7.4	625
39	32	49	$43 / 4$	8.8	720
42	34	53	5	10.2	815
48	38	60	$51 / 2$	12.9	1000
54	43	68	6	16.6	1235
60	48	76	$61 / 2$	20.5	1475
66	53	83	7	24.8	1745
72	58	91	$71 / 2$	29.5	2040
78	63	98	8	34.6	2350
84	68	106	$81 / 2$	40.1	2680
90	72	113	9	46.1	3050
96	77	121	$91 / 2$	52.4	3420
102	82	128	$93 / 4$	59.2	3725
108	87	136	10	66.4	4050
114	92	143	$101 / 2$	74.0	4470
120	97	151	11	82.0	4930
132	106	166	12	99.2	5900
144	116	180	13	118.6	7000

similar to those of horizontal elliptical pipe in that under similar cover conditions it is subject to the same field load as a round pipe with the same span. For minimum cover conditions where live load requirements control the design, the loading to which arch pipe is subjected is almost identical to that for an equivalent size circular pipe with the same invert elevation. Illustration 5.5 includes the dimensions and approximate weights of concrete arch pipe.

Illustration 5.4 Typical Cross Section of Arch Pipe

Illustration 5.5 Dimensions and Approximate Weights of Concrete Arch Pipe

ASTM C 506 - Reinforced Concrete Arch Culvert, Storm Drain and Sewer Pipe					
Equivalent Round Size, inches	Minimum Rise, inches	Minimum Span, inches	Minimum Wall Thickness, inches	Water-Way Area, square feet	Approximate Weight, pounds per foot
15	11	18	$21 / 4$	1.1	-
18	$131 / 2$	22	$21 / 2$	1.65	170
21	$151 / 2$	26	$23 / 4$	2.2	225
24	18	$281 / 2$	3	2.8	320
30	$221 / 2$	$361 / 4$	$31 / 2$	4.4	450
36	$265 / 8$	$433 / 4$	4	6.4	595
42	$315 / 16$	$511 / 8$	$41 / 2$	8.8	740
48	36	$581 / 2$	5	11.4	880
54	40	65	$51 / 2$	14.3	1090
60	45	73	6	17.7	1320
72	54	88	7	25.6	1840
84	62	102	8	34.6	2520
90	72	115	$81 / 2$	44.5	2750
96	$771 / 4$	122	9	51.7	3110
108	$871 / 8$	138	10	66.0	3850
120	$967 / 8$	154	11	81.8	5040
132	$1061 / 2$	$1683 / 4$	10	99.1	5220

Illustration 5.6 Typical Cross Section of Precast Concrete Box Sections

CONCRETE BOX SECTIONS

Precast concrete box sections, as shown in Illustration 5.6, are useful in minimum cover and width situations or other conditions where clearance problems are encountered, for special waterway requirements, or designer preference. Illustration 5.7 includes the dimensions and approximate weights of standard precast concrete box sections. Special design precast concrete box sections may be produced which conform to the requirements of the respective specifications but in different size and cover conditions.

Illustration 5.7 Dimensions and Approximate Weights of Concrete Box Sections

ASTM C1433-PRECAST REINFORCED CONCRETE BOX SECTIONS						
Span (Ft.)	Rise (Ft.)	Top Slab	Thickness (in. Bot. Slab	Wall	Waterway Area (Sq. Feet)	Approx. Weigh \dagger (lbs/ft)
3	2	7	6	4	5.8	830
3	3	7	6	4	8.8	930
4	2	$71 / 2$	6	5	7.7	1120
4	3	$71 / 2$	6	5	11.7	1240
4	4	$71 / 2$	6	5	15.7	1370
5	3	8	7	6	14.5	1650
5	4	8	7	6	19.5	1800
5	5	8	7	6	24.5	1950
6	3	8	7	7	17.3	1970
6	4	8	7	7	23.3	2150
6	5	8	7	7	29.3	2320
6	6	8	7	7	35.3	2500
7	4	8	8	8	27.1	2600
7	5	8	8	8	34.1	2800
7	6	8	8	8	41.1	3000
7	7	8	8	8	48.1	3200
8	4	8	8	8	31.1	2800
8	5	8	8	8	39.1	3000
8	6	8	8	8	47.1	3200
8	7	8	8	8	55.1	3400
8	8	8	8	8	63.1	3600
9	5	9	9	9	43.9	3660
9	6	9	9	9	52.9	3880
9	7	9	9	9	61.9	4110
9	8	9	9	9	70.9	4330
9	9	9	9	9	79.9	4560
10	5	10	10	10	48.6	4380
10	6	10	10	10	58.6	4630
10	7	10	10	10	68.6	4880
10	8	10	10	10	78.6	5130
10	9	10	10	10	88.6	5380
10	10	10	10	10	98.6	5630
11	4	11	11	11	42.3	4880
11	6	11	11	11	64.3	5430
11	8	11	11	11	86.3	5980
11	10	11	11	11	108.3	6530
11	11	11	11	11	119.3	6810
12	4	12	12	12	46.0	5700
12	6	12	12	12	70.0	6300
12	8	12	12	12	94.5	6900
12	10	12	12	12	118.0	7500
12	12	12	12	12	142.0	8100

SPECIAL SECTIONS

Precast Concrete Manhole Sections. Precast manholes offer significant savings in installed cost over cast-in-place concrete, masonry or brick manholes and are universally accepted for use in sanitary or storm sewers. Precast, reinforced concrete manhole sections are available throughout the United States and Canada, and are generally manufactured in accordance with the provisions of American Society for Testing and Materials Standard C 478.

The typical precast concrete manhole as shown in Illustration 5.8 consists of riser sections, a top section and grade rings and, in many cases, precast base sections or tee sections. The riser sections are usually 48 inches in diameter, but are available from 36 inches up to 72 inches and larger. They are of circular cross section, and a number of sections may be joined vertically on top of the base or junction chamber. Most precast manholes employ an eccentric or a concentric cone section instead of a slab top. These reinforced cone sections affect the transition from the inside diameter of the riser sections to the specified size of the top opening. Flat slab tops are normally used for very shallow manholes and consist of a reinforced circular slab at least 6-inches thick for risers up to 48 inches in diameter and 8 -inches thick for larger riser sizes. The slab which rests on top of the riser sections is cast with an access opening.

Precast grade rings, which are placed on top of either the cone or flat slab top section, are used for close adjustment of top elevation. Cast iron manhole cover assemblies are normally placed on top of the grade rings.

The manhole assembly may be furnished with or without steps inserted into the walls of the sections. Reinforcement required by ASTM Standard C 478 is primarily designed to resist handling stresses incurred before and during installation, and is more than adequate for that purpose. Such stresses are more severe than those encountered in the vertically installed manhole. In normal installations, the intensity of the earth loads transmitted to the manhole risers is only a fraction of the intensity of the vertical pressure.

The maximum allowable depth of a typical precast concrete manhole with regard to lateral earth pressures is in excess of 300 feet or, for all practical purposes, unlimited, Because of this, the critical or limiting factor for manhole depth is the supporting strength of the base structure or the resistance to crushing of the ends of the riser section. This phenomena, being largely dependent on the relative settlement of the adjacent soil mass, does not lend itself to precise analysis. Even with extremely conservative values for soil weights, lateral pressure and friction coefficients, it may be concluded several hundred feet can be safely supported by the riser sections without end crushing, based on the assumption that provision is made for uniform bearing at the ends of the riser sections and the elimination of localized stress concentrations.

Illustration 5.8 Typical Configuration of Precast Manhole Sections

When confronted with manhole depths greater than those commonly encountered, there may be a tendency to specify additional circumferential reinforcement in the manhole riser sections. Such requirements are completely unnecessary and only result in increasing the cost of the manhole structure.

A number of joint types may be used for manhole risers and tops, including mortar, mastic, rubber gaskets or combinations of these three basic types for sealing purposes. Consideration should be given to manhole depth, the presence of groundwater and the minimum allowable leakage rates in the selection of specific joint requirements.

Flat Base Pipe. Flat base pipe as shown in Illustration 5.9 has been used as cattle passes, pedestrian underpasses and utility tunnels. It is normally furnished with joints designed for use with mortar or mastic fillers and may be installed by the conventional open trenching method or by jacking.

Although not covered by any existing national specification, standard designs have been developed by various manufacturers which are appropriate for a wide range of loading conditions.

Illustration 5.9 Typical Cross Sections of Flat Base Pipe

STANDARD SPECIFICATIONS FOR CONCRETE PIPE

Nationally accepted specifications covering concrete pipe along with the applicable size ranges and scopes of the individual specifications are included in the following list.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 14 Concrete Sewer, Storm Drain and Culvert Pipe: Covers nonreinforced concrete pipe intended to be used for the conveyance of sewage, industrial wastes, storm water, and for the construction of culverts in sizes from 4 inches through 36 inches in diameter.

Abstract

ASTM C 76 Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe: Covers reinforced concrete pipe intended to be used for the conveyance of sewage, industrial wastes, and storm waters, and for the construction of culverts. Class I-60 inches through 144 inches in diameter; Class II, III, IV and V - 12 inches through 144 inches in diameter. Larger sizes and higher classes are available as special designs.

ASTM C 118 Concrete Pipe for Irrigation or Drainage: Covers concrete pipe intended to be used for the conveyance of irrigation water under low hydrostatic heads, generally not exceeding 25 feet, and for use in drainage in sizes from 4 inches through 24 inches in diameter.

ASTM C 361 Reinforced Concrete Low-Head Pressure Pipe: Covers reinforced concrete pipe intended to be used for the construction of pressure conduits with low internal hydrostatic heads generally not exceeding 125 feet in sizes from 12 inches through 108 inches in diameter.

ASTM C 412 Concrete Drain Tile: Covers nonreinforced concrete drain tile with internal diameters from 4 inches to 24 inches for Standard Quality, and 4 inches to 36 inches for Extra-Quality, Heavy-Duty ExtraQuality and Special Quality Concrete Drain Tile.

ASTM C 443 Joints for Circular Concrete Sewer and Culvert Pipe, with Rubber Gaskets: Covers joints where infiltration or exfiltration is a factor in the design, including the design of joints and the requirements for rubber gaskets to be used therewith for pipe conforming in all other respects to ASTM C 14 or ASTM C 76.

ASTM C 444 Perforated Concrete Pipe: Covers perforated concrete pipe intended to be used for underdrainage in sizes 4 inches and larger.

ASTM C 478 Precast Reinforced Concrete Manhole Sections: Covers precast reinforced concrete manhole risers, grade rings and tops to be used to construct manholes for storm and sanitary sewers.

ASTM C 497 Standard Test Methods for Concrete Pipe, Manhole Sections, or Tile: Covers procedures for testing concrete pipe and tile.

ASTM C 505 Nonreinforced Concrete Irrigation Pipe With Rubber Gasket Joints: Covers pipe to be used for the conveyance of irrigation water with working pressures, including hydraulic transients, of up to 30 feet of head. Higher pressures may be used up to a maximum of 50 feet for 6 inch through 12 inch diameters, and 40 feet for 15 inch through 18 inch diameters by increasing the strength of the pipe.

ASTM C 506 Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe: Covers pipe to be used for the conveyance of sewage, industrial waste, and storm water and for the construction of culverts in sizes from 15 inch through 132 inch equivalent circular diameter. Larger sizes are available as special designs.

ASTM C 507 Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe: Covers reinforced elliptically shaped concrete pipe to be used for the conveyance of sewage, industrial waste and storm water, and for the construction of culverts. Five standard classes of horizontal elliptical, 18 inches through 144 inches in equivalent circular diameter and five standard classes of vertical elliptical, 36 inches through 144 inches in equivalent circular diameter are included. Larger sizes are available as special designs.

ASTM C 655 Reinforced Concrete D-load Culvert, Storm Drain and Sewer Pipe: Covers acceptance of pipe design and production pipe based upon the D-load concept and statistical sampling techniques for concrete pipe to be used for the conveyance of sewage, industrial waste and storm water and construction of culverts.

ASTM C 822 Standard Definitions and Terms Relating to Concrete Pipe and Related Products: Covers words and terms used in concrete pipe standards.

ASTM C 877 External Sealing Bands for NonCircular Concrete Sewer, Storm Drain and Culvert Pipe: Covers external sealing bands to be used for noncircular pipe conforming to ASTM C 506, C 507, C 789 and C 850 .

ASTM C 923 Resilient Connectors Between Reinforced Concrete Manhole Structures and Pipes: Covers the minimum performance and material requirements for resilient connections between pipe and reinforced concrete manholes conforming to ASTM C 478.

ASTM C 924 Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method: Covers procedures for testing concrete pipe sewer lines when using the low-pressure air test method to demonstrate the integrity of the installed material and construction procedures.

ASTM C 969 Infiltration and Exfiltration Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines: Covers procedures for testing installed precast concrete pipe sewer lines using either water infiltration or exfiltration acceptance limits to demonstrate the integrity of the installed materials and construction procedure.

ASTM C 985 Nonreinforced Concrete Specified Strength Culvert, Storm Drain, and Sewer Pipe: Covers nonreinforced concrete pipe designed for specified strengths and intended to be used for the conveyance of sewage, industrial wastes, storm water, and for the construction of culverts.

ASTM C 990 Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Sealants: Covers joints for precast concrete pipe, box, and other sections using preformed flexible joint sealants for use in storm sewers and culverts which are not intended to operate under internal pressure, or are not subject to infiltration or exfiltration limits.

ASTM C 1103 Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines: Covers procedures for testing the joints of installed precast concrete pipe sewer lines, when using either air or water under low pressure to demonstrate the integrity of the joint and construction procedure.

ASTM C 1131 Least Cost (Life Cycle) Analysis of Concrete Culvert, Storm Sewer, and Sanitary Sewer Systems: Covers procedures for least cost (life cycle) analysis (LCA) of materials, systems, or structures proposed for use in the construction of concrete culvert, storm sewer and sanitary sewer systems.

ASTM C 1214 Test Method for Concrete Pipe Sewerlines by Negative Air Pressure (Vacuum) Test Method: Covers procedures for testing concrete pipe sewerlines, when using the negative air pressure (vacuum) test method to demonstrate the integrity of the installed material and the construction procedures.

ASTM C 1244 Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test: Covers procedures for testing precast concrete manhole sections when using the vacuum test method to demonstrate the integrity of the installed materials and the construction procedures.

ASTM C 1417 Manufacture of Reinforced Concrete Sewer, Storm Drain, and Culvert Pipe for Direct Design: Covers the manufacture and acceptance of precast concrete pipe designed to conform to the owner's design requirements and to ASCE 15-93 (Direct Design Standard) or an equivalent design specification.

ASTM C 1433 Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers: Covers single-cell precast reinforced concrete box sections intended to be used for the construction of culverts
for the conveyance of storm water and industrial wastes and sewage.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 86	Concrete Sewer, Storm Drain, and Culvert Pipe: Similar to ASTM C 14.
AASHTO M 170	Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe: Similar to ASTM C 76.

AASHTO M 175 Perforated Concrete Pipe: Similar to ASTM C 444.
AASHTO M 178 Concrete Drain Tile: Similar to ASTM C 412.
AASHTO M 198 Joints for Circular Concrete Sewer and Culvert Pipe, Using Flexible Watertight Gaskets: Similar to ASTM C 990.

AASHTO M 199 Precast Reinforced Concrete Manhole Sections: Similar to ASTM C 478.

AASHTO M 206 Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe: Similar to ASTM C 506.
$\begin{array}{ll}\text { AASHTO M } 207 & \text { Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer } \\ & \text { Pipe: Similar to ASTM C 507. }\end{array}$
AASHTO M 242 Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe: Similar to ASTM C 655.

AASHTO M 259 Precast Reinforced Concrete Box Sections for Culverts, Storm Drains and Sewers: Similar to ASTM C 789.

AASHTO M 262 Concrete Pipe and Related Products: Similar to ASTM C 882.
AASHTO M 273 Precast Reinforced Box Section for Culverts, Storm Drains, and Sewers with less than 2 feet of Cover Subject to Highway Loadings: Similar to ASTM C 850.

AASHTO T 280 Methods of Testing Concrete Pipe, Sections, or Tile: Similar to ASTM C 497.

AASHTO M 315 Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets: Similar to ASTM C 443.

PIPE JOINTS

Pipe joints perform a variety of functions depending upon the type of pipe and its application. To select a proper joint, determine which of the following characteristics are pertinent and what degree of performance is acceptable.

Joints are designed to provide:

1. Resistance to infiltration of ground water and/or backfill material.
2. Resistance to exfiltration of sewage or storm water.
3. Control of leakage from internal or external heads.
4. Flexibility to accommodate lateral deflection or longitudinal movement without creating leakage problems.
5. Resistance to shear stresses between adjacent pipe sections without creating leakage problems.
6. Hydraulic continuity and a smooth flow line.
7. Controlled infiltration of ground water for subsurface drainage.
8. Ease of installation.

The actual field performance of any pipe joint depends primarily upon the inherent performance characteristics of the joint itself, the severity of the conditions of service, and the care with which it is installed.

Since economy is important, it is usually necessary to compare the installed cost of several types of joints against pumping and treatment costs resulting from increased or decreased amounts of infiltration.

The concrete pipe industry utilizes a number of different joints, listed below, to satisfy a broad range of performance requirements. These joints vary in cost, as well as in inherent performance characteristics. The field performance of all is dependent upon proper installation procedures.

- Concrete surfaces, either bell and spigot or tongue and groove, with some packing such as cement mortar, a preformed mastic compound, or a trowel applied mastic compound, as shown in Illustration 5.10. These joints have no inherent watertightness but depend exclusively upon the workmanship of the contractor. Field poured concrete diapers or collars are sometimes used with these joints to improve performance. Joints employing mortar joint fillers are rigid, and any deflection or movement after installation will cause cracks permitting leakage. If properly applied, mastic joint fillers provide a degree of flexibility without impairing watertightness. These joints are not generally recommended for any internal or external head conditions if leakage is an important consideration. Another jointing system used with this type joint is the external sealing band type rubber gasket conforming to ASTM C 877. Generally limited to straight wall and modified tongue and groove configurations, this jointing system has given good results in resisting external heads of the magnitude normally encountered in sewer construction.

Illustration 5.10 Typical Cross Sections of Joints With Mortar or Mastic Packing

MORTOR PACKING

MASTIC PACKING

- Concrete surfaces, with or without shoulders on the tongue or the groove, with a compression type rubber gasket as shown in Illustration 5.11. Although there is wide variation in joint dimensions and gasket cross section for this type joint, most are manufactured in conformity with ASTM C 443. This type joint is primarily intended for use with pipe manufactured to meet the requirements of ASTM C 14 or ASTM C 76 and may be used with either bell and spigot or tongue and groove pipe.

Illustration 5.11 Typical Cross Sections of Basic Compression Type Rubber Gasket Joints

- Concrete surfaces with opposing shoulders on both the bell and spigot for use with an 0-ring, or circular cross section, rubber gasket as shown in Illustration 5.12. Basically designed for low pressure capability, these joints are frequently used for irrigation lines, waterlines, sewer force mains, and gravity or low head sewer lines where infiltration or exfiltration is a factor in the design. Meeting all of the requirements of ASTM C 443, these type joints are also employed with pipe meeting the requirements of ASTM C 361. They provide good inherent watertightness in both the straight and deflected positions, which can be demonstrated by plant tests.

Illustration 5.12 Typical Cross Sections of Opposing Shoulder Type Joint With 0-ring Gasket

- Concrete surfaces with a groove on the spigot for an 0 -ring rubber gasket, as shown in Illustration 5.13. Also referred to as a confined 0 -ring type joint, these are designed for low pressure capabilities and are used for irrigation lines, water lines, sewer force mains, and sewers where infiltration or exfiltration is a factor in the design. This type joint, which provides excellent inherent watertightness in both the straight and deflected positions, may be employed to meet the joint requirements of ASTM C 443 and ASTM C 361.

Illustration 5.13 Typical Cross Section of Spigot Groove Type Joint With 0-ring Gasket

- Steel bell and spigot rings with a groove on the spigot for an 0-ring rubber gasket, as shown in Illustration 5.14. Basically a high pressure joint designed for use in water transmission and distribution lines, these are also used for irrigation lines, sewer force mains, and sewers where infiltration
or exfiltration is a factor in the design. This type of joint will meet the joint requirements of ASTM C 443 and ASTM C 361. Combining great shear strength and excellent inherent watertightness and flexibility, this type joint is the least subject to damage during installation.

Illustration 5.14 Typical Cross Section of Steel End Ring Joint With Spigot Groove and 0-ring Gasket

Since both field construction practices and conditions of service are subject to variation, it is impossible to precisely define the field performance characteristics of each of the joint types. Consultation with local concrete pipe manufacturers will provide information on the availability and cost of the various joints. Based on this information and an evaluation of groundwater conditions, the specifications should define allowable infiltration or exfiltration rates and/or the joint types which are acceptable.

JACKING CONCRETE PIPE

Concrete pipelines were first jacked in place by the Northern Pacific Railroad between 1896 and 1900. In more recent years, this technique has been applied to sewer construction where intermediate shafts along the line of the sewer are used as jacking stations.

Reinforced concrete pipe as small as 18 -inch inside diameter and as large as 132 -inch inside diameter have been installed by jacking.

Required Characteristics of Concrete Jacking Pipe. Two types of loading conditions are imposed on concrete pipe installed by the jacking method; the axial load due to the jacking pressures applied during installation, and the earth loading due to the overburden, with some possible influence from live loadings, which will generally become effective only after installation is completed.

It is necessary to provide for relatively uniform distribution of the axial load around the periphery of the pipe to prevent localized stress concentrations. This is accomplished by keeping the pipe ends parallel within the tolerances prescribed by ASTM C 76, by using a cushion material, such as plywood or hardboard,
between the pipe sections, and by care on the part of the contractor to insure that the jacking force is properly distributed through the jacking frame to the pipe and parallel with the axis of the pipe. The cross sectional area of the concrete pipe wall is more than adequate to resist pressures encountered in any normal jacking operation. For projects where extreme jacking pressures are anticipated due to long jacking distances or excessive unit frictional forces, higher concrete compressive strength may be required, along with greater care to avoid bearing stress concentrations. Little or no gain in axial crushing resistance is provided by specifying a higher class of pipe.

For a comprehensive treatment of earth loads on jacked pipe see Chapter 4. The earth loads on jacked pipe are similar to loads on a pipe installed in a trench with the same width as the bore with one significant difference. In a jacked pipe installation the cohesive forces within the soil mass in most instances are appreciable and tend to reduce the total vertical load on the pipe. Thus the vertical load on a jacked pipe will always be less than on a pipe in a trench installation with the same cover and, unless noncohesive materials are encountered, can be substantially less.

With the proper analysis of loadings and selection of the appropriate strength class of pipe, few additional characteristics of standard concrete pipe need be considered. Pipe with a straight wall, without any increase in outside diameter at the bell or groove, obviously offers fewer problems and minimizes the required excavation. Considerable quantities of modified tongue and groove pipe have been jacked, however, and presented no unusual problems.

The Jacking Method. The usual procedure in jacking concrete pipe is to equip the leading edge with a cutter, or shoe, to protect the pipe. As succeeding lengths of pipe are added between the lead pipe and the jacks, and the pipe jacked forward, soil is excavated and removed through the pipe. Material is trimmed with care and excavation does not precede the jacking operation more than necessary. Such a procedure usually results in minimum disturbance of the natural soils adjacent to the pipe.

Contractors occasionally find it desirable to coat the outside of the pipe with a lubricant, such as bentonite, to reduce the frictional resistance. In some instances, this lubricant has been pumped through special fittings installed in the wall of the pipe.

Because of the tendency of jacked pipe to "set" when forward movement is interrupted for as long as a few hours, resulting in significantly increased frictional resistance, it is desirable to continue jacking operations until completed.

In all jacking operations it is important that the direction of jacking be carefully established prior to beginning the operation. This requires the erection of guide rails in the bottom of the jacking pit or shaft. In the case of large pipe, it is desirable to have such rails carefully set in a concrete slab. The number and capacity of the jacks required depend primarily upon the size and length of the pipe to be jacked and the type of soil encountered.

Illustration 5.15 Steps in Jacking Concrete Pipe

1. Pits are excavated on each side. The jacks will bear against the back of the left pit so a steel or wood abutment is added for reinforcement. A simple track is added to guide the concrete pipe section. The jack(s) are positioned in place on supports.
2. A section of concrete pipe is lowered into the pit.
3. The jack(s) are operated pushing the pipe section forward.
4. The jack ram(s) are retracted and a "spacer" is added between the jack(s) and pipe.
5. The jack(s) are operated and the pipe is pushed forward again.
6. It may become necessary to repeat the above steps 4 and 5 several times until the pipe is pushed forward enough to allow room for the next section of pipe. It is extremely important, therefore, that the strokes of the jacks be as long as possible to reduce the number of spacers required and thereby reduce the amount of time and cost. The ideal situation would be to have the jack stroke longer than the pipe to completely eliminate the need for spacers.
7. The next section of pipe is lowered into the pit and the above steps repeated. The entire process above is repeated until the operation is complete.

Backstops for the jacks must be strong enough and large enough to distribute the maximum capacity of the jacks against the soil behind the backstops. A typical installation for jacking concrete pipe is shown in Illustration 5.15.

BENDS AND CURVES

Changes in direction of concrete pipe sewers are most commonly effected at manhole structures. This is accomplished by proper location of the inlet and outlet openings and finishing of the invert in the structure to reflect the desired angular change of direction.

In engineering both grade and alignment changes in concrete pipelines it is not always practical or feasible to restrict such changes to manhole structures. Fortunately there are a number of economical alternatives.

Deflected Straight Pipe. With concrete pipe installed in straight alignment and the joints in a home (or normal) position, the joint space, or distance between the ends of adjacent pipe sections, will be essentially uniform around the periphery of the pipe. Starting from this home position any joint may be opened up to a maximum permissible joint opening on one side while the other side remains in the home position. The difference between the home and opened joint space is generally designated as the pull. This maximum permissible opening retains some margin between it and the limit for satisfactory function of the joint. It varies for different joint configurations and is best obtained from the pipe manufacturer.

Opening a joint in this manner effects an angular deflection of the axis of the pipe, which, for any given pull is a function of the pipe diameter. Thus, given the values of any two of the three factors; pull, pipe diameter, and deflection angle, the remaining factor may be readily calculated.

The radius of curvature which may be obtained by this method is a function of the deflection angle per joint and the length of the pipe sections. Thus, longer lengths of pipe will provide a longer radius for the same pull than would be obtained with shorter lengths. The radius of curvature is computed by the equation:

$$
R=\frac{L}{2\left(\tan 1 / 2 \times \frac{\Delta}{N}\right)}
$$

where:
$R=$ Radius of curvature, feet
$L=$ Average laid length of pipe sections measured along the centerline, feet
$\Delta=$ Total deflection angle of curve, degrees
$\mathrm{N}=$ Number of pipe with pulled joints
$\frac{\Delta}{N}=$ Total deflection of each pipe, degrees

Using the deflected straight pipe method, Illustration 5.16 shows that the P.C. (point of curve) will occur at the midpoint of the last undeflected pipe and the P.T. (point of tangent) will occur at the midpoint of the last pulled pipe.

Illustration 5.16 Curved Alignment Using Deflected Straight Pipe

Radius Pipe. Sharper curvature with correspondingly shorter radii can be accommodated with radius pipe than with deflected straight pipe. This is due to the greater deflection angle per joint which may be used. In this case the pipe is manufactured longer on one side than the other and the deflection angle is built in at the joint. Also referred to as bevelled or mitered pipe, it is similar in several respects to deflected straight pipe. Thus, shorter radii may be obtained with shorter pipe lengths; the maximum angular deflection which can be obtained at each joint is a function of both the pipe diameter and a combination of the geometric configuration of the joint and the method of manufacture.

These last two factors relate to how much shortening or drop can be applied to one side of the pipe. The maximum drop for any given pipe is best obtained from the manufacturer of the pipe since it is based on manufacturing feasibility.

The typical alignment problem is one in which the total Δ angle of the curve and the required radius of curvature have been determined. The diameter and direction of laying of the pipe are known. To be determined is whether the curve can be negotiated with radius pipe and, if so, what combination of pipe lengths and drop are required. Information required from the pipe manufacturer is the maximum permissible drop, the wall thicknesses of the pipe and the standard lengths in which the pipe is available. Any drop up to the maximum may be used as required to fit the curve.

Values obtained by the following method are approximate, but are within a range of accuracy that will permit the pipe to be readily installed to fit the required alignment.

The tangent of the deflection angle, $\frac{\Delta}{N}$ required at each joint is computed by the equation:

$$
\tan \frac{\Delta}{N}=\frac{L}{R+D / 2+t}
$$

where:
$\Delta=$ Total deflection angle of curve, degrees
$\mathrm{N}=$ Number of radius pipe
$\mathrm{L}=$ The standard pipe length being used, feet
R = Radius of curvature, feet
D = Inside diameter of the pipe, feet
$t=$ Wall thickness of the pipe, feet
The required drop in inches to provide the deflection angle, $\frac{\Delta}{N}$ computed by the equation:

Drop $=12(D+2 t) \tan \frac{\Delta}{N}$
The number of pieces of radius pipe required is equal to the length of the circular curve in feet divided by the centerline length of the radius pipe ($\mathrm{L}-1 / 2$ Drop). Minor modifications in the radius are normally made so this quotient will be a whole number.

If the calculated drop exceeds the maximum permissible drop, it will be necessary to either increase the radius of curvature or to use shorter pipe lengths. Otherwise special fittings must be used as covered in the next section.

It is essential that radius pipe be oriented such that the plane of the dropped joint is at right angles to the theoretical circular curve. For this reason lifting holes in the pipe must be accurately located, or, if lifting holes are not provided, the top of the pipe should be clearly and accurately marked by the manufacturer so that the deflection angle is properly oriented.

It should also be noted that a reasonable amount of field adjustment is possible by pulling the radius pipe joints in the same manner as with deflected straight pipe.

Illustration 5.17 Curved Alignment Using Radius Pipe

Projection of joints do not converge at common point, but are tangents to a common circle whose diameter is equal to pipe length.

As indicated in Illustration 5.17, the P.C. (point of curve) falls at the midpoint of the last straight pipe and the P.T. (point of tangent) falls one half of the standard pipe length back from the straight end of the last radius pipe. To assure that the P.C. will fall at the proper station it is generally necessary that a special short length of pipe be installed in the line, ahead of the P.C.

Bends and Special Sections. Extremely short radius curves cannot be negotiated with either deflected straight pipe or with conventional radius pipe. Several alternatives are available through the use of special precast sections to solve such alignment problems.

Sharper curves can be handled by using special short lengths of radius pipe rather than standard lengths. These may be computed in accordance with the methods discussed for radius pipe.

Certain types of manufacturing processes permit the use of a dropped joint on both ends of the pipe, which effectively doubles the deflection. Special bends,
or elbows can be manufactured to meet any required deflection angle and some manufacturers produce standard bends which provide given angular deflection per section.

One or more of these methods may be employed to meet the most severe alignment problems. Since manufacturing processes and local standards vary, local concrete pipe manufacturers should be consulted to determine the availability and geometric configuration of special sections.

SIGNIFICANCE OF CRACKING

The occurrence, function and significance of cracks have probably been the subject of more misunderstanding and unnecessary concern by engineers than any other phenomena related to reinforced concrete pipe.

Reinforced concrete pipe, like reinforced concrete structures in general, are made of concrete reinforced with steel in such a manner that the high compressive strength of the concrete is balanced by the high tensile strength of the steel. In reinforced concrete pipe design, no value is given to the tensile strength of the concrete. The tensile strength of the concrete, however, is important since all parts of the pipe are subject to tensile forces at some time subsequent to manufacture. When concrete is subjected to tensile forces in excess of its tensile strength, it cracks.

Unlike most reinforced concrete structures, reinforced concrete sewer and culvert pipe is designed to meet a specified cracking load rather than a specified stress level in the reinforcing steel. This is both reasonable and conservative since reinforced concrete pipe may be pretested in accordance with detailed national specifications.

In the early days of the concrete pipe industry, the first visible crack observed in a three-edge bearing test was the accepted criterion for pipe performance. However, the observation of such cracks was subject to variations depending upon the zeal and eyesight of the observer. The need soon became obvious for a criterion based on a measurable crack of a specified width. Eventually the 0.01 -inch crack, as measured by a feeler gage of a specified shape, became the accepted criterion for pipe performance.

The most valid basis for selection of a maximum allowable crack width is the consideration of exposure and potential corrosion of the reinforcing steel. If a crack is sufficiently wide to provide access to the steel by both moisture and oxygen, corrosion will be initiated. Oxygen is consumed by the oxidation process and in order for corrosion to be progressive there must be a constant replenishment.

Bending cracks are widest at the surface and get rapidly smaller as they approach the reinforcing steel. Unless the crack is wide enough to allow circulation of the moisture and replenishment of oxygen, corrosion is unlikely. Corrosion is even further inhibited by the alkaline environment resulting from the cement.

While cracks considerably in excess of 0.01-inch have been observed after a period of years with absolutely no evidence of corrosion, 0.01 -inch is a conservative and universally accepted maximum crack width for design of reinforced concrete pipe.

- Reinforced concrete pipe is designed to crack. Cracking under load indicates that the tensile stresses have been transferred to the reinforcing steel.
- A crack 0.01 -inch wide does not indicate structural distress and is not harmful.
- Cracks much wider than 0.01 -inch should probably be sealed to insure protection of the reinforcing steel.
- An exception to the above occurs with pipe manufactured with greater than 1 inch cover over the reinforcing steel. In these cases acceptable crack width should be increased in proportion to the additional concrete cover.

Tables

Table 1

sewage flows used for design

City	$\begin{aligned} & \text { Year } \\ & \text { oat } \\ & \text { 0at } \end{aligned}$		$\begin{gathered} \text { Population } \\ \text { served. } \\ \text { thousands. } \end{gathered}$	Per capita sewage flow average? in gpcd	Sewer design basis in gDcd	Remarks	City	$\begin{aligned} & \text { Yeat } \\ & \text { or } \\ & \text { Data } \end{aligned}$	Average rate on mater conswmotion. singoct	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Population } \\ \text { served } \\ \text { ne } \\ \text { thousands } \end{array} \\ \hline \end{array}$	Per capita sewage flow average? in gped	Sewer design basisin Bis basis in gocd soc	Rematks
Baitimore. Md.	-	160	1.300	100	$135 \times$ factor	Factor 4 to 2	Little Rock. Ark.	-	50	100	50	100	${ }^{-}$-
Berkeley, Calif.	-	76	113	60	92	-	Los Angeles. Calif.	1965	185	2.710	85	-	* 85 gpcdi ${ }^{\text {residential multi- }}$
Boston. Mass.	-	145	801	140	150	Flowing half full					70*		*Domestic flow only, ranges
Creveland. Ohio ${ }^{3}$	1946	-	-	100	-	-	cos Angeles County Sanitation District	1964	200	3.500	70^{*}	-	from 50 to 90 gpcd ' depend-
Cranston. RI. ${ }^{3}$	1943	-	-	119	167	-							ing on cost of water, type
Des Moines. Iowa ${ }^{3}$	1949	-	-	100	200	-							of residence, etc. . Domestic plus industrial averages
Grand Rapids. Mich.	-	178	200	189.5	200	-							$90 \mathrm{gpcd}^{1}$
Great Peoria. Illinois	1960	90	150	75	800 8000	Based on 12 persons per	Madison, Wisc. ${ }^{3}$	1937	-	-	-	300	Maximum hourly rate
						acre for lateral and trunk sewers respectively	Memphis, Tenn.	-	125	450	100	100	-
Greenville County.	1959	110	200	150	300	Service area includes city of Greenville. ${ }^{1}$ Sewers 24" and less designed to flow $1 / 2$ full at 300 gpcd, ${ }^{1}$ sewers larger than $24^{\prime \prime}$ designed to have 1' freeboard	Milwaukee. Wisc. ${ }^{3}$	1945	-	-	125	-	All in $12 \mathrm{hr} \cdot 250 \cdot \mathrm{gpcd}$ ' rate
							Orlando. Fla.	-	150	75	70	190	-
							Painesville. Ohio ${ }^{3}$	1947	-	-	125	600	includes infiltration and root water
							Rapid City, S. Dak.	-	122	40	121	125	-
Hagerstown. Md.	-	100	38	100	250		Rochester. N.Y. ${ }^{3}$	1946	-	-	-	250	New York State Board of
Jefterson County. AlaJohnson County. Kans.	-	102	500	100	300	-							Health standard
	1958						Santa Monica, Calif.	-	137	75	92	92	Sewer design is 150 gncd ${ }^{\text {d }}$
Indian Creek Main Sewer Dist.							Shreveport, La.	1961	125	165	-	-	Sewer design is $150 \mathrm{gpcd}^{1}$ plus 600 gp acre per day
Main Sewer Dist.	-	70	30	60	675	Most houses have basements with interior							infiltration. Sewers $24^{\prime \prime}$ in
						foundation drains							diameter and less designed
Main Sewer Dist.	-	70	70	60	1.350	Most houses have							than $24^{\prime \prime}$ designed to have
						basements with exterior foundation drains							1^{\prime} freeboard
Kansas City. Mo.	1958	-	500	60		For trunks and interceptors	Springrield, Mass. ${ }^{\text {J }}$	1949	-	-	-	200	150 gpcd ' was used on a special project
					1.350	For laterals and submains. Many houses have basements and exterior foundation drains	St. Joseph, Mo.	1960	-	85	125	$\begin{aligned} & 450 \\ & 350 \end{aligned}$	Main Sewers Interceptors
							Toledo, Ohio ${ }^{3}$	1946	-	-	-	160	-
Lancaster County, Neb.	1962	167	148	92	400	Serves City of Lincoln	Washington, D. C.,	1946			100		-
Las Vegas, Nev.	-	410	45	209	250	-	Suburban Sanitary						
Lincoln, Neb.	1964			60	See remarks		Wyoming. Mich	1960	150	50	82^{*}	400	-Calculated actual domestic sewage flown not including
(Lateral Dists.)						la: peak low= $5 \times$ avg. flow - (Pop in $\left.1000^{\prime} \mathrm{s}\right)^{0}{ }^{2}$							infiltration or industrial flow

${ }_{3}$ "Sewer Capacity Design Practice" by William E. Stanley and Warren J. Kaufman, Journal, Boston Soc. of Civil Engrs., October, 1953, p. 317 , Table 2.

Table 2

SEWER CAPACITY ALLOWANCES FOR COMMERCIAL AND INDUSTRIAL AREAS

City	$\begin{aligned} & \text { Year } \\ & \text { data } \end{aligned}$	Commercial	Industrial
Baitimore, Md. ${ }^{1}$	1949	$135 \mathrm{gpcd}^{2}$ (range 6,750 to $13,500 \mathrm{gpd}$ per acre), resident population	7,500 gpd per acre minimum
Berkeley, Calif	-	-	50,000 gpd per acre
Buffalo, N.Y. ${ }^{3}$	-	60,000 gpd per acre	-
Cincinnati, Ohio ${ }^{3}$	-	$40,000 \mathrm{gpd}$ per acre	-
Columbus, Ohio ${ }^{1}$	1946	$40,000 \mathrm{gpd}$ per acre; excess added to residential amount	-
Cranston, R.I. ${ }^{1}$	1943	$25,000 \mathrm{gpd}$ per acre	-
Dallas, Texas	1960	$30,000 \mathrm{gpd}$ per acre added to domestic rate for down town: $60,000 \mathrm{gpd}$ per acre for tunnel relief sewers	-
Detroit, Mich.	-	50,000 gpd per acre	-
Grand Rapids, Mich.	-	$40.50 \mathrm{gpcd},{ }^{2}$ office buildings $400-500 \mathrm{gpd}$ per room, hotels 200 gpd per bed, hospitals $200-300$ gpd per room, schools	250,000 gpd per acre
Hagerstown, Md.	-	$180-250 \mathrm{gpd}$ per room, hotels 150, gpd per bed, hospitals 120-150 gpd per room, schools	-
Houston, Texas	1960	0 ffice Bldgs. -0.36 gal per sq ft per day (peak) Retail Space- $0.20 \mathrm{gp} \mathrm{sq} \mathrm{ft} \mathrm{pd} \mathrm{(peak)}$ Hotels -0.93 gp sq ft pd (peak)	-
Las Vegas, Nev.	-	310.525 gpd per room, resort hotels 15 gpcd, ${ }^{2}$ schools	-
Lincoln, Neb.	1962	$7,000 \mathrm{gpd}$ per acre	-
Los Angeles, Calif.	1965	Commercial, $11,700 \mathrm{gpd}$ per acre Industrial, 0.024 cfs per acre Hospital, 0.75 mgd per hospital School, 0.12 mgd per school University, 0.73 mgd per university	
Los Angeles County Sanitation District	1964	$10,000 \mathrm{gpd}$ per acre, avg. 25,000 gpd per acre, peak	-
Kansas City, Mo.	1958	5,000 gpd per acre	10,000 gpd per acre
Memphis, Tenn.	-	2.000 gpd per acre	2,000 gpd per acre
Milwaukee, Wis. ${ }^{\text { }}$	1945	60,500 gpd per acre	-
Santa Monica, Calif.	-	9,700 gpd per acre, commercial 7,750 gpd per acre, hotels	13,600 gpd per acre
Shreveport, La.	-	3,000 gpd per acre	-
St. Joseph, Mo.	1962	6,000 gpd per acre	-
St. Louis, Mo.	1960	$90,000 \mathrm{gpd}$ per acre avg. 165,000 gpd per acre peak	-
Toledo, Ohio ${ }^{1}$	1946	15,000 to 30,000 gpd per acre, average to peak allowances	-
Toronto	1960	63,500 gpd per acre downtown sewers	-

[^1]Table 3

FULL FLOW COEFFICIENT VALUES CIRCULAR CONCRETE PIPE

D Pipe Diameter (inches)	A Area (Square Feet)	R Hydraulic Radius (Feet)	Value of $C_{1}=\frac{1.486}{n} \times A \times R^{2 / 3}$			
			$\mathrm{n}=0.010$	$\mathrm{n}=0.011$	$\mathrm{n}=0.012$	$\mathrm{n}=0.013$
8	0.349	0.167	15.8	14.3	13.1	12.1
10	0.545	0.208	28.4	25.8	23.6	21.8
12	0.785	0.250	46.4	42.1	38.6	35.7
15	1.227	0.312	84.1	76.5	70.1	64.7
18	1.767	0.375	137	124	114	105
21	2.405	0.437	206	187	172	158
24	3.142	0.500	294	267	245	226
27	3.976	0.562	402	366	335	310
30	4.909	0.625	533	485	444	410
33	5.940	0.688	686	624	574	530
36	7.069	0.750	867	788	722	666
42	9.621	0.875	1308	1189	1090	1006
48	12.566	1.000	1867	1698	1556	1436
54	15.904	1.125	2557	2325	2131	1967
60	19.635	1.250	3385	3077	2821	2604
66	23.758	1.375	4364	3967	3636	3357
72	28.274	1.500	5504	5004	4587	4234
78	33.183	1.625	6815	6195	5679	5242
84	38.485	1.750	8304	7549	6920	6388
90	44.170	1.875	9985	9078	8321	7681
96	50.266	2.000	11850	10780	9878	9119
102	56.745	2.125	13940	12670	11620	10720
108	63.617	2.250	16230	14760	13530	12490
114	70.882	2.375	18750	17040	15620	14420
120	78.540	2.500	21500	19540	17920	16540
126	86.590	2.625	24480	22260	20400	18830
132	95.033	2.750	27720	25200	23100	21330
138	103.870	2.875	31210	28370	26010	24010
144	113.100	3.000	34960	31780	29130	26890

Table 4
FULL FLOW COEFFICIENT VALUES
ELLIPTICAL CONCRETE PIPE

Pipe Size R×S (HE) SXR(VE) (Inches)	Approximate Equivalent Circular Diameter (Inches)	A Area (Square Feet)	R Hydraulic Radius (Feet)	Value of $C_{1}=\frac{1.486}{n} \times A \times R^{2 / 3}$			
				$n=0.010$	$n=0.01 .1$	$\mathrm{n}=0.012$	$n=0.013$
14×23	18	1.8	0.367	138	125	116	108
19×30	24	3.3	0.490	301	274	252	232
22×34	27	4.1	0.546	405	368	339	313
24×38	30	5.1	0.613	547	497	456	421
27×42	33	6.3	0.686	728	662	607	560
29×45	36	7.4	0.736	891	810	746	686
32×49	39	8.8	0.812	1140	1036	948	875
34×53	42	10.2	0.875	1386	1260	1156	1067
38×60	48	12.9	0.969	1878	1707	1565	1445
43×68	54	16.6	1.106	2635	2395	2196	2027
48×76	60	20.5	1.229	3491	3174	2910	2686
53×83	66	24.8	1.352	4503	4094	3753	3464
58×91	72	29.5	1.475	5680	5164	4734	4370
63×98	78	34.6	1.598	7027	6388	5856	5406
68×106	84	40.1	1.721	8560	7790	7140	6590
72×113	90	46.1	1.845	10300	9365	8584	7925
77×121	96	52.4	1.967	12220	11110	10190	9403
82×128	102	59.2	2.091	14380	13070	11980	11060
87×136	108	66.4	2.215	16770	15240	13970	12900
92×143	114	74.0	2.340	19380	17620	16150	14910
97×151	120	82.0	2.461	22190	20180	18490	17070
106×166	132	99.2	2.707	28630	26020	23860	22020
116×180	144	118.6	2.968	36400	33100	30340	28000

Table 5
FULL FLOW COEFFICIENT VALUES CONCRETE ARCH PIPE

$\begin{gathered} \text { Pipe Size } \\ \text { R } \times S \\ \text { (Inches) } \end{gathered}$	Approximate Equivalent Circular Diameter (Inches)	A Area (Square Feet)	R Hydraulic Radius (Feet)	Value of $\mathrm{C}_{1}=\frac{1.486}{n} \times A \times R^{2 / 3}$			
				$\mathrm{n}=0.010$	$\mathrm{n}=0.011$	$\mathrm{n}=0.012$	$\mathrm{n}=0.013$
11×18	15	1.1	0.25	65	59	54	50
$131 / 2 \times 22$	18	1.6	0.30	110	100	91	84
$151 / 2 \times 26$	21	2.2	0.36	165	150	137	127
$18 \times 281 / 2$	24	2.8	0.45	243	221	203	187
$221 / 2 \times 361 / 4$	30	4.4	0.56	441	401	368	339
265/8 $\times 433 / 4$	36	6.4	0.68	736	669	613	566
315/16x 511/8	42	8.8	0.80	1125	1023	938	866
$36 \times 58 \frac{1}{2}$	48	11.4	0.90	1579	1435	1315	1214
40×65	54	14.3	1.01	2140	1945	1783	1646
45×73	60	17.7	1.13	2851	2592	2376	2193
54×88	72	25.6	1.35	4641	4219	3867	3569
62×102	84	34.6	1.57	6941	6310	5784	5339
72×115	90	44.5	1.77	9668	8789	8056	7436
$771 / 4 \times 122$	96	51.7	1.92	11850	10770	9872	9112
$871 / 8 \times 138$	108	66.0	2.17	16430	14940	13690	12640
$967 / 8 \times 154$	120	81.8	2.42	21975	19977	18312	16904
$1061 / 2 \times 1683 / 4$	132	99.1	2.65	28292	25720	23577	21763

Table 6

			FULL	OW CO CONCR	$\begin{aligned} & \text { FICIENT } \\ & \text { E BOX } \end{aligned}$	UES TIONS			
Box	A		$\mathrm{C}=1.486$	($\mathrm{A} \times \mathrm{R}^{2 / 3}$)	Box Size	A	R	$\mathrm{C}=1.486$	$\left.A \times R^{2 / 3}\right)$
Span \times Rise (Feet)	(Square Feet)	Radius (Feet)	$\mathrm{n}=0.012$	$n=0.013$	(Feet)	(Square Feet)	Radius (Feet)	$n=0.012$	$\mathrm{n}=0.013$
3×2	5.78	0.63	524	484	9×5	43.88	1.67	7060	7070
3×3	8.78	0.78	923	852	9×6	52.88	1.87	9950	9180
4×2	7.65	0.69	743	686	9×7	61.88	2.05	12400	11400
4×3	11.65	0.90	1340	1240	9×8	70.88	2.20	14800	13700
4×4	15.65	1.04	1990	1840	9×9	79.88	2.33	17400	16100
5×3	14.50	0.98	1770	1630	10×5	48.61	1.73	8690	8020
5×4	19.50	1.16	2660	2460	10×6	58.61	1.95	11300	10462
5×5	24.50	1.30	3620	3340	10×7	68.61	2.14	14100	13000
6×3	17.32	1.04	2200	2030	10×8	78.61	2.31	17000	15700
6×4	23.32	1.25	3350	3100	10×9	88.61	2.46	20000	18500
6×5	29.32	1.42	4590	4240	10×10	98.61	2.59	23000	21300
6×6	35.32	1.56	5880	5430	11×4	42.32	1.52	6930	6390
7×4	27.11	1.33	4050	3740	11×6	64.32	2.02	12730	11700
7×5	34.11	1.52	5590	5160	11×8	86.32	2.41	19200	17700
7×6	41.11	1.68	7200	6650	11×10	108.32	2.72	26100	24100
7×7	48.11	1.82	8880	8200	11×11	119.32	2.85	29700	27400
8×4	31.11	1.39	4790	4420	12×4	46.00	1.55	7630	7050
8×5	39.11	1.60	6630	6120	12×6	70.00	2.08	14100	13000
8×6	47.11	1.78	8760	7920	12×8	94.00	2.50	21400	19800
8×7	55.11	1.94	10600	9790	12×10	118.00	2.83	29300	27000
8×8	63.11	2.07	12700	11700	12×12	142.00	3.11	37500	34600

Table 7

SLOPES REQUIRED FOR V = 2fps AT FULL AND HALF FULL FLOW

Pipe Diameter (Inches)	Slope in \%			
	$\mathrm{n}=0.010$	$\mathrm{n}=0.011$	$\mathrm{n}=0.012$	$n=0.013$
8	0.197	0.238	0.284	0.332
10	0.147	0.178	0.213	0.248
12	0.115	0.139	0.166	0.194
15	0.086	0.104	0.123	0.145
18	0.067	0.081	0.097	0.114
21	0.055	0.066	0.079	0.092
24	0.046	0.055	0.066	0.077
27	0.039	0.047	0.056	0.065
30	0.034	0.041	0.049	0.057
33	0.030	0.036	0.043	0.051
36	0.027	0.032	0.038	0.045
42	0.022	0.026	0.031	0.036
48	0.018	0.022	0.026	0.031
54	0.015	0.019	0.022	0.027
60	0.013	0.016	0.019	0.023
66	0.012	0.014	0.017	0.020
72	0.011	0.013	0.015	0.018
78	0.010	0.011	0.014	0.016
84	0.009	0.010	0.012	0.015
90	0.008	0.010	0.011	0.013
96	0.007	0.009	0.010	0.012
102	0.007	0.008	0.010	0.011
108	0.006	0.007	0.009	0.010
114	0.006	0.007	0.008	0.010
120	0.005	0.006	0.008	0.009
126	0.005	0.006	0.007	0.008
132	0.004	0.006	0.007	0.008
138	0.004	0.005	0.006	0.007
144	0.004	0.005	0.006	0.007

Note: For a velocity V other than $2 f p s$, multiple the above by $\frac{V^{2}}{4}$.

Table 8

RUNOFF COEFFICIENTS FOR VARIOUS AREAS

DESCRIPTION OF AREA
 RUNOFF COEFFICIENTS

Business:Downtown areas 0.70 to 0.95
Neighborhood areas 0.50 to 0.70
Residential:
Single-family areas 0.30 to 0.50
Multi units, detached 0.40 to 0.60
Multi units, attached 0.60 to 0.75
Residential (suburban) 0.25 to 0.40
Apartment dwelling areas 0.50 to 0.70
Industrial:
Light areas 0.50 to 0.80
Heavy areas 0.60 to 0.90
Parks, cemeteries 0.10 to 0.25
Playgrounds 0.20 to 0.35
Railroad yard areas 0.20 to 0.40
Unimproved areas 0.10 to 0.30

Table 9
RAINFALL INTENSITY CONVERSION FACTORS

Duration in Minutes	Factor	Duration in Minutes	Factor
5	2.22	40	0.8
10	1.71	50	0.7
15	1.44	60	0.6
20	1.25	90	0.5
30	1.00	120	0.4

Table 10
RECURRENCE INTERVAL FACTORS

Recurrence Interval in Years	Factor
2	1.0
5	1.3
10	1.6
25	1.9
50	2.2

Table 11
NATIONWIDE FLOOD-FREQUENCY PROJECTS

Table 12

ENTRANCE LOSS COEFFICIENTS

Coefficient k_{e} to apply to velocity head $\frac{V^{2}}{2 g}$ for determination of head loss at entrance to a structure, such as a culvert or conduit, operating full or partly full with control at the outlet.

$$
\text { Entrance head loss } H_{e}=k_{e} \frac{V^{2}}{2 g}
$$

TYPE OF ENTRANCE

COEFFICIENT k_{e}
Projecting from fill, socket end (groove-end). 0.2
Projecting from fill, sq. cut end . 0.5
Headwall or headwall and wingwalls
Socket end of pipe (groove-end) . 0.2
Square-edge . 0.5
Rounded (radius $=1 / 12 \mathrm{D}$) . 0.2
End-Section conforming to fill slope . 0.5
Note: "End Section conforming to fill slope" are the sections commonly available from manu-. facturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance.

TYPE OF STRUCTURE AND DESIGN OF
 ENTRANCE BOX, REINFORCED CONCRETE

COEFFICIENT k_{e}
Headwall parallel to embankment (no wing walls)Square-edged on 3 edges0.5
Rounded on 3 edges to radius of $1 / 12$ barrel dimension 0.2
Wing walls at 30° to 75° to barrel
Square-edged at crown 0.4
Crown edge rounded to radius of $1 / 12$ barrel dimension 0.2
Wing walls at 10° to 25° to barrel Square-edged at crown 0.5
Wing walls parallel (extension of sides)
Square-edged at crown 0.7

Table 13
Pipe Size = 12"

Pipe Size＝15＂

	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{0}{\circ}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	－	¢	$\stackrel{\square}{\text { m }}$	$\stackrel{\square}{\text { m }}$		ल	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\square}{\text { ci }}$	$\stackrel{\sim}{\mathrm{n}}$	$\stackrel{\ominus}{\oplus}$	$\stackrel{\varrho}{\oplus}$	べ	¢	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bigcirc}{\circ}$	－	F－	$\stackrel{\text { Y }}{+}$	$\underset{\sim}{\sim}$	$\stackrel{+}{\square}$		－		$\stackrel{\square}{\square}$
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\stackrel{\infty}{\text { i }}$	$\stackrel{\sim}{\text { ® }}$	\bigcirc	\bigcirc	$\stackrel{\Gamma}{\text { ¢ }}$	ल゙	ल	ल	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\bigcirc}{\circ}$	ल	－	\cdots	$\stackrel{\sim}{\circ}$	¢	$\underset{\sim}{O}$	$\stackrel{\circ}{\text {－}}$	$\stackrel{\square}{+}$	$\stackrel{\text { ¢ }}{+}$	$\stackrel{\text { ¢ }}{+}$			\％	$\stackrel{\text { 子 }}{\text {－}}$
	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\imath}{2} \end{aligned}$	$: \stackrel{\infty}{\sim}$	$\stackrel{\sim}{\text { N }}$	$\stackrel{\circ}{\text { M }}$	0	$\overline{\text { m }}$	ल	$\stackrel{\sim}{\mathrm{m}}$	$\stackrel{\sim}{\infty}$	¢	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\circ}$	ल	－	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{\circ}$	¢	$\stackrel{\circ}{\dot{+}}$	$\stackrel{\circ}{\dot{+}}$	$\stackrel{\square}{+}$	$\stackrel{\text { ¢ }}{+}$	$\stackrel{\text {＋}}{+}$			$\dot{\square}$	$\stackrel{+}{*}$
	$\stackrel{-}{\stackrel{\circ}{2}}$	へ	$\stackrel{\infty}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{O}{\infty}$	¢	¢	N	ल	m	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\sim}{\infty}$	¢			$\stackrel{\text { ¢ }}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	∞	$\underset{\sim}{\infty}$	$\stackrel{+}{\dot{+}}$	$\stackrel{-}{7}$		\％		$\stackrel{\substack{\mid}}{+}$	$\stackrel{\sim}{\dot{\sim}}$
$\left.\begin{gathered} o \\ \stackrel{m}{0} \\ \vdots \\ \vdots \\ \stackrel{11}{3} \end{gathered} \right\rvert\,$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\stackrel{\sim}{\text { c }}$	$\stackrel{\square}{m}$	$\stackrel{N}{\sim}$	$\underset{\sim}{c} \mid$	$\underset{\sim}{\infty}$	$\stackrel{+}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\bullet}{\circ}$	N	べ	$\stackrel{\infty}{\infty}$	-ృ	0		$\stackrel{\square}{\text { 子 }}$	$\stackrel{\text { ¢ }}{\text {－}}$	$\stackrel{\text { ソ }}{+}$	$\stackrel{m}{\dot{\sim}}$	$\underset{\dot{\sim}}{\dot{\sim}}$	$\underset{+}{\dot{*}}$	$\stackrel{\circ}{\dot{\sim}}$	\bigcirc	$\stackrel{\circ}{+}$		$\dot{\sim}$	$\stackrel{\infty}{+}$
	$\begin{gathered} \stackrel{\oplus}{0} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{y}{2} \end{gathered}$	$\stackrel{\square}{\text { ® }}$	\bigcirc	$\stackrel{\Gamma}{\text { ¢ }}$	N	N゙	ल	$\stackrel{\text { ¢ }}{\substack{+ \\ \hline}}$	¢	$\begin{gathered} \varphi \\ \infty \end{gathered}$	$\stackrel{\bullet}{\varrho}$	N	©			\bigcirc	$\stackrel{7}{7}$	$\stackrel{\Gamma}{\dot{\sigma}}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\dot{\sim}}$	$\stackrel{\oplus}{\dot{\sim}}$	$\stackrel{\rightharpoonup}{\dot{\sim}}$	$\stackrel{\sim}{+}$			$\stackrel{\varphi}{\boldsymbol{\sigma}}$	$\stackrel{\ominus}{+}$
	$\begin{gathered} \underset{\sim}{N} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	0	\bigcirc	$\stackrel{\Gamma}{\text { ¢ }}$	ल	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\mathrm{m}}$	$\stackrel{\sim}{\infty}$	$\stackrel{\varrho}{\oplus}$	$\stackrel{\varrho}{\varrho}$	$\widehat{\omega}$	$\stackrel{\infty}{\infty}$			\bigcirc	F	$\underset{\sim}{\square}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\underset{\sim}{2}}$	$\stackrel{\oplus}{\dot{\sim}}$	$\dot{寸}$	$\stackrel{\sim}{+}$		$\stackrel{\circ}{+}$	$\stackrel{\ominus}{\dot{+}} \mid$	$\stackrel{\odot}{\odot}$
	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{0}} \underset{\substack{2}}{ }$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { i }}{\text { i }}$	\bigcirc	\bar{m}	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\sim}{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{\downarrow}{\oplus}$	$\stackrel{1}{\infty}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\oplus}{\omega}$			$\stackrel{\infty}{n} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\stackrel{\circ}{\infty} \underset{\sim}{\circ}$	$\stackrel{\circ}{\dot{\sim}}$	$\underset{\dot{+}}{\circ}$	$\underset{\sim}{\tau}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\dot{\sim}}$	$\stackrel{+}{*}$			$\stackrel{\sim}{\circ}$	$\stackrel{\square}{\square}$
$\left\|\begin{array}{c} 0 \\ \frac{0}{0} \\ 0 \\ 111 \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\Delta} \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$	－	$\stackrel{\sim}{\sim}$	$⿳ 亠 丷 ⿵ 冂 ⿱ 八 乂 心 .$	$\stackrel{\star}{\dot{c}}$	$\stackrel{\stackrel{n}{\mathrm{~N}}}{ }$	$\stackrel{10}{0}$	$\stackrel{\square}{\circ}$	ल	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\dot{+}}$	$\underset{子}{F}$		$\underset{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	－	$\underset{\sim}{\circ}$	$\stackrel{\sim}{\dot{\sim}}$	$\stackrel{\odot}{\odot}$	$\stackrel{\sim}{+}$	－	－			$\stackrel{0}{\circ} \mid$	${ }^{\circ}$
	$\begin{aligned} & \infty \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \end{aligned}$	$\overline{\mathrm{m}}$	N	$\stackrel{m}{\mathrm{~m}}$	$\underset{\sim}{\underset{\sim}{r}}$	$\stackrel{1}{\infty}$	$\stackrel{\sim}{0}$	$\stackrel{\varrho}{\oplus}$	ल	$\underset{\sim}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{-}{+}$		$\stackrel{7}{7}$		$\stackrel{\substack{\infty \\ \dot{\sim}}}{ }$		$\underset{+}{\dot{+}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\ominus}{\dot{+}}$	$\stackrel{\odot}{\dot{\sim}}$				$\stackrel{\sigma}{\dot{+}}$	$\stackrel{\square}{+}$
	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \end{aligned}$	$\overline{\text { c }}$	N	$\begin{gathered} \mathrm{m} \\ \mathrm{~m} \end{gathered}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{n} \underset{\sim}{\circ}$	ल	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\infty}$	$\stackrel{-}{+}$	F	$\stackrel{7}{7}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\dot{\sim}}$		$\underset{\sim}{寸}$	$\mid \stackrel{\sim}{\circ}$	$\stackrel{\ominus}{\dot{+}}$	$\stackrel{\bullet}{\dot{\sim}}$				$\stackrel{+}{\dot{+}} \dot{+}$	$\stackrel{9}{+}$
	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{i}{2}$	$\stackrel{O}{\mathrm{~m}}$	$\stackrel{\Gamma}{\infty}$	$\stackrel{\sim}{c}$	$\underset{\sim}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{n} \mid \underset{\sim}{n}$	$\stackrel{\varrho}{\oplus}$	N	$\stackrel{\infty}{\infty}$				$\stackrel{-}{\dot{j}}$	$\stackrel{\sim}{7}$	$\stackrel{m}{\dot{\sim}}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\forall}$	$\mid \stackrel{\leftrightarrow}{\dot{\sim}}$	$\stackrel{1}{\dot{\sim}}$	$\stackrel{\circ}{+}$	－		－	$\stackrel{\infty}{\square}$
$\left\|\begin{array}{c} 20 \\ \vdots \\ \vdots \\ 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\stackrel{\rightharpoonup}{\Sigma}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\stackrel{\Gamma}{\mathrm{m}}$	N	$\underset{\sim}{m}$	$\stackrel{\underset{\sim}{\infty}}{ }$	$\stackrel{\sim}{\mathrm{n}}$	$\stackrel{\varrho}{\omega}$	べ	$\dot{n})_{\infty}^{\infty}$	$\stackrel{\oplus}{\infty}$	$\stackrel{O}{\dot{\sim}}$	$\stackrel{\Gamma}{\dot{\sigma}}$	$\stackrel{\sim}{*}$		$\stackrel{7}{7}$	$\stackrel{寸}{\dot{f}}$	$\stackrel{\sim}{7}$	$\stackrel{\odot}{\dot{+}}$	$\underset{\sim}{\gamma}$	$\stackrel{\infty}{\dot{\sim}}$	$\stackrel{\infty}{\dot{子}}$	$\underset{子}{\odot}$	－	－		No	N
	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{y}{2} \end{gathered}$	0	$\stackrel{\Gamma}{\text { m }}$	$\underset{\sim}{N}$	$\stackrel{m}{\infty}$	$\underset{\oplus}{\underset{\sim}{2}}$	$\stackrel{\circ}{\infty}$	$\stackrel{\varrho}{\varrho}$	$\stackrel{\sim}{\circ}$	$\underset{\sim}{\infty}$	$\stackrel{9}{\infty}$	$\stackrel{O}{\dot{\sim}}$	$\dot{+}$			$\stackrel{\sim}{\circ}$	$\stackrel{\text { J }}{7}$	$\underset{\sim}{\circ}$	$\stackrel{\odot}{+}$	$\stackrel{\text { r }}{ }$	$\stackrel{\text { r }}{+}$	$\underset{寸}{\infty}$	－	인	S	\bigcirc	－
	$\begin{aligned} & \underset{\sim}{\otimes} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$	0	\bar{m}	$\underset{\sim}{n}$	$\stackrel{m}{\mathrm{~m}}$	$\stackrel{\rightharpoonup}{\text { ¢ }}$	$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\bigcirc}{\mathrm{j}}$	$\stackrel{\infty}{\infty}$	¢	$\stackrel{O}{\dot{+}}$			$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$	\checkmark	$\stackrel{\circ}{\sim}$	$\stackrel{\odot}{\dot{+}}$	$\underset{\dot{r}}{\hat{r}}$	$\stackrel{\text {－}}{+}$	$\underset{寸}{\infty}$	－	－	\bigcirc	\％	is
	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{o}{\mathrm{i}}$	$\stackrel{0}{\infty}$	\bar{m}	$\stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\bullet}{\omega} \mid \stackrel{c}{c}$	ल	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$				$\stackrel{\sim}{\sim}$	$\stackrel{m}{\square}$	$\stackrel{+}{*}$	$\stackrel{\circ}{\sim}$	$\stackrel{\bullet}{\dot{r}}$	$\stackrel{\ominus}{\dot{+}}$	$\stackrel{\text {－}}{ }$	$\stackrel{\infty}{+}$	ナ	－	¢	\bigcirc
		\sim	\bullet													웅	\bigcirc	\cdots	N	N	～	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	へ	\sim	$\stackrel{\sim}{N}$	－

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

Pipe Size = 54"																
Transition Widths (FT)																
	$\mathrm{Ku}^{\prime}=0.165$				$K u^{\prime}=0.150$				$K u^{\prime}=0.130$				Ku' $=0.110$			
	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4
5	8.3	8.6	8.6	8.9	8.3	8.6	8.6	8.9	8.2	8.5	8.5	8.8	8.1	8.4	8.4	8.7
6	8.4	8.7	8.7	9.0	8.4	8.7	8.7	9.0	8.3	8.6	8.6	8.9	8.2	8.5	8.5	8.8
7	8.6	8.9	8.9	9.2	8.5	8.8	8.8	9.1	8.4	8.6	8.6	8.9	8.2	8.5	8.5	8.8
8	8.7	9.0	9.0	9.3	8.6	8.9	8.9	9.2	8.4	8.7	8.7	9.0	8.3	8.6	8.6	8.9
9	8.8	9.1	9.1	9.4	8.7	9.0	9.0	9.3	8.5	8.8	8.8	9.1	8.4	8.7	8.7	9.0
10	8.9	9.2	9.2	9.5	8.8	9.1	9.1	9.4	8.6	8.9	8.9	9.2	8.5	8.8	8.8	9.0
11	9.0	9.3	9.3	9.6	8.9	9.2	9.2	9.5	8.7	9.0	9.0	9.3	8.5	8.8	8.8	9.1
12	9.2	9.5	9.5	9.7	9.0	9.3	9.3	9.6	8.8	9.1	9.1	9.4	8.6	8.9	8.9	9.2
13	9.3	9.6	9.6	9.9	9.1	9.4	9.4	9.7	8.9	9.2	9.2	9.5	8.7	9.0	9.0	9.3
14	9.4	9.7	9.7	10.0	9.2	9.5	9.5	9.8	9.0	9.3	9.3	9.6	8.8	9.1	9.1	9.4
15	9.5	9.8	9.8	10.1	9.3	9.6	9.6	9.9	9.1	9.4	9.4	9.7	8.9	9.2	9.2	9.5
16	9.6	9.9	9.9	10.2	9.5	9.7	9.7	10.0	9.2	9.5	9.5	9.8	9.0	9.3	9.3	9.5
17	9.7	10.0	10.0	10.3	9.6	9.9	9.9	10.1	9.3	9.6	9.6	9.9	9.0	9.3	9.3	9.6
18	9.9	10.2	10.2	10.4	9.7	10.0	10.0	10.2	9.4	9.7	9.7	10.0	9.1	9.4	9.4	9.7
19	10.0	10.3	10.3	10.6	9.8	10.1	10.1	10.4	9.5	9.8	9.8	10.1	9.2	9.5	9.5	9.8
20	10.1	10.4	10.4	10.7	9.9	10.2	10.2	10.5	9.6	9.9	9.9	10.2	9.3	9.6	9.6	9.9
21	10.2	10.5	10.5	10.8	10.0	10.3	10.3	10.6	9.7	10.0	10.0	10.3	9.4	9.7	9.7	9.9
22	10.3	10.6	10.6	10.9	10.1	10.4	10.4	10.7	9.8	10.1	10.1	10.3	9.4	9.7	9.7	10.0
23	10.4	10.7	10.7	11.0	10.2	10.5	10.5	10.8	9.9	10.1	10.1	10.4	9.5	9.8	9.8	10.1
24	10.5	10.8	10.8	11.1	10.3	10.6	10.6	10.9	9.9	10.2	10.2	10.5	9.6	9.9	9.9	10.2
25	10.6	10.9	10.9	11.2	10.4	10.7	10.7	11.0	10.0	10.3	10.3	10.6	9.7	10.0	10.0	10.3
26	10.7	11.0	11.0	11.3	10.5	10.8	10.8	11.1	10.1	10.4	10.4	10.7	9.8	10.1	10.1	10.3
27	10.8	11.1	11.1	11.4	10.6	10.9	10.9	11.2	10.2	10.5	10.5	10.8	9.8	10.1	10.1	10.4
28	10.9	11.2	11.2	11.5	10.7	11.0	11.0	11.3	10.3	10.6	10.6	10.9	9.9	10.2	10.2	10.5
29	11.0	11.3	11.3	11.6	10.8	11.1	11.1	11.4	10.4	10.7	10.7	11.0	10.0	10.3	10.3	10.6
30	11.0	11.3	11.3	11.6	10.8	11.1	11.1	11.4	10.4	10.7	10.7	11.0	10.0	10.3	10.3	10.6

Table 25

Pipe Size = 66"
Transition Widths (FT)

$\stackrel{\circ}{ } \stackrel{\substack{0 \\ \hline}}{\stackrel{\circ}{2}}$

 Type 3

Table 27

Pipe Size＝78＂
Transition Widths（FT）

$\begin{gathered} \text { 윽 } \\ \stackrel{0}{0} \\ 11 \\ \stackrel{\rightharpoonup}{7} \end{gathered}$		$\begin{aligned} & \stackrel{1}{\sim} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mathrm{~N}} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{\mathrm{M}} \end{aligned}$	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \stackrel{\mathrm{M}}{ } \end{array}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{r}}$	$\begin{aligned} & \underset{N}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{\dot{m}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \underset{m}{n} \end{aligned}$	$\stackrel{\bullet}{\stackrel{\circ}{\Gamma}}$	$\begin{aligned} & \hat{m} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \underset{9}{9} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \dot{T} \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{T} \end{aligned}\right.$	$\underset{\sim}{\dot{T}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\sim}{~}$
	$\begin{gathered} \infty \\ 0 \\ 0 \\ \end{gathered}$	$\stackrel{O}{2}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\stackrel{\overline{\mathrm{N}}}{ }$	$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{m}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{N}{N}} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{\mathrm{N}} \\ \stackrel{1}{2} \end{array}$	$\underset{\underset{N}{\mathrm{~N}}}{ }$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\mathrm{N}}{\mathbf{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{9}{9} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{m}{2} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{r}}{\stackrel{\rightharpoonup}{r}}$	$\stackrel{N}{\sim}$	$\begin{aligned} & \underset{\sim}{m} \\ & \hline \end{aligned}$	$\stackrel{\underset{\sim}{c}}{\substack{2}}$	$\begin{aligned} & \mathrm{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\sim}$
	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & O \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\stackrel{\Gamma}{\mathrm{N}}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{N}{2}} \end{gathered}$	$\left.\begin{array}{\|l\|} \mathbf{L} \\ \stackrel{\mathrm{S}}{ } \end{array} \right\rvert\,$	$\begin{aligned} & \mathbf{O} \\ & \stackrel{i}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\underset{N}{N}}{\stackrel{1}{2}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{r} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{r}}$	$\begin{gathered} \stackrel{\sim}{c} \\ \stackrel{\rightharpoonup}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\underset{\sim}{\dot{m}}}{ }$	$\begin{aligned} & \stackrel{\leftrightarrow}{\infty} \\ & \dot{m} \end{aligned}$	$\left\|\begin{array}{l} n \\ m \\ \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \dot{m} \end{array}\right\|$	$\begin{aligned} & \stackrel{N}{\mathbf{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\sim}$
	$\stackrel{\square}{0}$	$\stackrel{1}{5}$	$\stackrel{\stackrel{\varphi}{\dot{F}}}{ }$	$\stackrel{\stackrel{\varphi}{\dot{F}}}{ }$	$\stackrel{\underset{r}{\mathrm{~F}}}{\mathbf{F}}$	$\stackrel{\underset{ }{\mathrm{N}}}{\boldsymbol{F}}$	$\underset{\underset{\sim}{\infty}}{\dot{F}}$	$\stackrel{̣}{\dot{F}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\underset{\underset{\sim}{\mathrm{N}}}{\substack{2}}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{Q}{\mathrm{~N}} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{\Gamma}{\dot{m}}$	$\begin{aligned} & \dot{m} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & m \\ & \cdots \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\stackrel{+}{\square}$
$\begin{array}{\|c} 0 \\ \stackrel{0}{0} \\ 0 \\ 11 \\ \stackrel{\rightharpoonup}{3} \end{array}$	$\begin{gathered} \dot{+} \\ \stackrel{0}{0} \\ \underset{1}{2} \end{gathered}$	$\stackrel{\leftrightarrow}{\sim}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{array}{\|c} \infty \\ \underset{\sim}{\mathrm{N}} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\Gamma}{\underset{\sim}{m}}$	$\begin{aligned} & \underset{m}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & m \\ & \underset{c}{m} \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{c}}}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \stackrel{1}{\mathrm{~m}} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\varrho}{\dot{m}} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \stackrel{N}{\mathbf{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{c} \end{aligned}$	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & O \\ & \underset{\sim}{O} \end{aligned}$	$\underset{\sim}{\tau}$	$\begin{aligned} & \underset{\sim}{\underset{T}{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\dot{J}}}{\underset{\sim}{*}}$	$\underset{\underset{\sim}{\dot{T}}}{\dot{\sim}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \underset{\sim}{\bullet} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\ominus}{\dot{T}}$
	$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{array}$	$\begin{gathered} \underset{\sim}{n} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \underset{\sim}{\mathrm{i}} \\ \underset{\sim}{2} \end{gathered}$		$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	$\left.\begin{aligned} & \mathbf{O} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned} \right\rvert\,$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \end{aligned}$	\dot{m}	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & ⿳ ⺈ ⿴ 囗 ⿰ 丨 丨 八 \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\underset{r}{\dot{m}}}{ }$	$\left\|\begin{array}{l} \mathbf{n} \\ \underset{\sim}{m} \end{array}\right\|$	$\begin{aligned} & \stackrel{0}{m} \\ & \stackrel{j}{c} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & O \\ & \dot{T} \end{aligned}\right.$	$\underset{\sim}{\tau}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\xrightarrow{\text { N }}$
	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\Gamma}{N}$	$\stackrel{\Gamma}{\mathrm{N}}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{M}{\dot{\mathrm{~N}}} \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{\mathrm{N}}}}{ }$	$\left.\begin{aligned} & \mathbf{n} \\ & \underset{\sim}{2} \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{T} \end{aligned}$	$\stackrel{\Gamma}{\boldsymbol{m}}$	$\begin{aligned} & \stackrel{M}{n} \\ & \underset{m}{2} \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{m}{r} \end{aligned}$	$\stackrel{\underset{r}{\dot{m}}}{ }$	$\begin{aligned} & \stackrel{1}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \dot{m} \end{array}\right\|$	$\begin{aligned} & \dot{9} \\ & \dot{m} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{T} \end{aligned}\right.$	$\underset{\sim}{F}$	$\begin{aligned} & \underset{\sim}{v} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { N }}{+}$
	$\stackrel{\Gamma}{\otimes}$	$\stackrel{\ominus}{\square}$	$\stackrel{\rightharpoonup}{F}$	$\stackrel{\rightharpoonup}{F}$	$\stackrel{\infty}{\dot{F}}$	$\stackrel{9}{\boldsymbol{O}} \underset{\dot{F}}{ }$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\overline{\mathrm{N}}}{ }$	$\begin{aligned} & \underset{\mathrm{N}}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \hline \end{gathered}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{N} \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{\Gamma}{\mathrm{m}}$	$\underset{\underset{\sim}{m}}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\dot{m}}{\underset{\sim}{*}}$	$\begin{aligned} & \stackrel{1}{n} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\Gamma}{\dot{p}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\sim}$
$\begin{array}{\|c} 0 \\ \frac{0}{0} \\ 0 \\ 11 \\ \vdots \\ \vdots \end{array}$	$\stackrel{+}{\circ}$	$\begin{aligned} \bullet \\ \underset{\sim}{2} \\ \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{N}{N}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{i}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \end{aligned}$	$\stackrel{\Gamma}{\underset{m}{2}}$	$\begin{aligned} & \stackrel{c}{n} \\ & \underline{m} \end{aligned}$	$\begin{aligned} & \stackrel{m}{m} \\ & \stackrel{m}{2} \end{aligned}$	$\stackrel{\underset{r}{c}}{\substack{2}}$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\rho} \end{aligned}$	$\begin{aligned} & \underset{9}{9} \\ & \dot{m} \end{aligned}$	$\stackrel{O}{\dot{T}}$	$\underset{\underset{T}{T}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\underset{~}{*}}}{\underset{\sim}{2}}$	$\left\lvert\, \begin{aligned} & \mathbf{L} \\ & \underset{\sim}{4} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\bullet} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{r} \\ & \dot{T} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\underset{\sim}{9}$	$\stackrel{\Gamma}{6}$	$\stackrel{5}{5}$
	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \end{aligned}$	$\stackrel{\underset{N}{N}}{\substack{2}}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{\sim}} \end{array}\right\|$	$\left.\begin{aligned} & \mathbf{L} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned} \right\rvert\,$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\mathrm{M}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{m}{r} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{r}}$	$\begin{aligned} & \underline{N} \\ & \underset{\sim}{c} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{c}}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \mathbf{M} \\ & \underset{\rho}{m} \end{aligned}$	$\begin{aligned} & \stackrel{\varphi}{\stackrel{\rightharpoonup}{r}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{9}{9} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{T}{\prime} \end{aligned}$	$\underset{\sim}{\tau}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{寸}{\dot{T}} \end{aligned}$	$\underset{\sim}{\mathrm{L}}$	$\begin{aligned} & \underset{\sim}{\dot{T}} \\ & \hline \end{aligned}$	$\stackrel{\bigcirc}{\dot{T}}$
	$\stackrel{N}{0}$	$\underset{\sim}{2}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{i}} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{gathered}$	$\left\|\begin{array}{l} \underset{\sim}{\mathrm{M}} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{array}{\|l} \underset{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathbf{Q} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{\Gamma}{\Gamma}$	$\begin{aligned} & N \\ & M \end{aligned}$	$\stackrel{\underset{\sim}{r}}{ }$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\varphi}{\stackrel{\rightharpoonup}{r}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\rho}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{9} \\ & \stackrel{y}{2} \end{aligned}$	$\underset{\sim}{\circ}$	$\underset{\underset{T}{\prime}}{\underset{\sim}{2}}$	$\left\lvert\, \begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\underset{\sim}{\dot{J}}}{\dot{\sim}}$	$\stackrel{\stackrel{1}{\mathrm{~N}}}{\underset{\sim}{2}}$	$\stackrel{\ominus}{\underset{\sim}{r}}$	$\stackrel{\bullet}{+}$
	$\stackrel{\Gamma}{0}$	$\frac{N}{N}$	$\stackrel{\infty}{\underset{\Gamma}{\infty}}$	$\stackrel{\Gamma}{\Gamma}$	$\begin{aligned} & O \\ & \stackrel{\rightharpoonup}{\dot{~}} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\begin{gathered} \underset{N}{N} \end{gathered}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{N}{2}} \end{gathered}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{-} \end{aligned}$	$\begin{aligned} & \stackrel{M}{m} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\underset{\sim}{\oplus}}{\stackrel{\rightharpoonup}{+}}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\sim}{r} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \dot{m} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{T} \end{aligned}\right.$	$\underset{\sim}{\tau}$	$\stackrel{\underset{N}{N}}{\underset{\sim}{2}}$	$\stackrel{\text { N }}{+}$
	$\begin{aligned} & \dot{+} \\ & \stackrel{0}{0} \\ & \underset{i}{2} \end{aligned}$	$\underset{\sim}{n}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \mathbf{o} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	$\underset{\sim}{\underset{\sim}{r}}$	$\begin{aligned} & \stackrel{m}{m} \\ & \stackrel{y}{n} \end{aligned}$	$\stackrel{\underset{\sim}{r}}{\stackrel{\rightharpoonup}{*}}$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{r} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{T}{2} \end{aligned}$	$\underset{\underset{T}{\prime}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\underset{T}{*}}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{\bullet} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{r} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{x} \end{aligned}\right.$	$\begin{aligned} & \boldsymbol{O} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{50}$	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{array}{r} \underset{\sim}{6} \\ \hline \end{array}$	$\stackrel{+}{6}$
	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ \hline 1 \end{gathered}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \end{aligned}$	$\stackrel{\mathbf{M}}{\stackrel{1}{\mathrm{~N}}}$	$\underset{\underset{\sim}{\mathrm{N}}}{ }$	$\begin{aligned} & \mathbf{N} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\left.\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \stackrel{1}{2} \end{aligned} \right\rvert\,$	$\stackrel{\underset{\mathrm{N}}{2}}{ }$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{r}}$	$\begin{aligned} & \stackrel{M}{m} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{m}{m} \\ & \stackrel{y}{n} \end{aligned}$		$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{\Gamma} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \dot{9} \\ & \underset{\sim}{r} \end{aligned}$	$\underset{\underset{T}{\circ}}{\substack{0}}$	$\underset{\underset{\sim}{\tau}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\underset{T}{*}}}{\substack{2}}$	$\left\lvert\, \begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\underset{\underset{\sim}{\bullet}}{\stackrel{\ominus}{\mathrm{T}}}$	$\begin{array}{\|l\|} \underset{T}{\prime} \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{T}} \\ & \hline \end{aligned}$	$\stackrel{\square}{\dot{j}}$
	$\stackrel{N}{\stackrel{N}{0}}$	$\underset{\sim}{n}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~N} \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{i}}}{ }$	$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \underset{\mathrm{N}}{ } \end{aligned}$	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \dot{m} \end{array}\right\|$	$\stackrel{\Gamma}{\underset{\sim}{r}}$	$\begin{aligned} & \stackrel{N}{m} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{m}{m} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{gathered} \underset{\sim}{\dot{m}} \\ \hline \end{gathered}$	$\begin{aligned} & \bullet \\ & \stackrel{\rho}{-} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$	$\stackrel{O}{\underset{T}{2}}$	$\underset{\underset{T}{\prime}}{ }$	$\begin{aligned} & \underset{\sim}{\top} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\dot{T}}}{\dot{寸}}$	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \underset{\sim}{t} \end{aligned}\right.$	$\stackrel{\oplus}{\underset{\sim}{+}}$	$\begin{array}{\|l\|} \underset{T}{\prime} \end{array}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 9 \\ & \underset{r}{9} \end{aligned}$	$\stackrel{\square}{\text { ¢ }}$
	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\Gamma}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{N}} \end{array}\right\|$	$$	$\begin{gathered} \underset{\sim}{\underset{N}{N}} \end{gathered}$	$\begin{aligned} & \stackrel{L}{\mathrm{~N}} \\ & \stackrel{\mathrm{~N}}{ } \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \stackrel{i}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \end{aligned}$	$\stackrel{\Gamma}{\stackrel{m}{r}}$	$\begin{aligned} & m \\ & \underset{\sim}{m} \end{aligned}$	$\stackrel{\underset{r}{\dot{m}}}{ }$	$\begin{aligned} & n \\ & \stackrel{m}{n} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\Gamma}{-} \end{aligned}$	$\begin{aligned} & \stackrel{N}{m} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{O}{\dot{T}}$	$\underset{\underset{T}{*}}{\underset{\sim}{2}}$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{*}}$	$\stackrel{1}{\sim}$	$\stackrel{\sim}{\square}$
		10	\bigcirc	N	∞	9	은	F	$\stackrel{\sim}{\sim}$	\cdots	＊	10	\bullet	N	\cdots	암	ㅇ	－	N	N	N	$\stackrel{1}{\sim}$	$\stackrel{\ominus}{\sim}$	N	$\stackrel{\sim}{\sim}$	N	O

Table 29

Table 30

Pipe Size = 90"																
Transition Widths (FT)																
	$\mathrm{Ku}^{\prime}=0.165$				$K u^{\prime}=0.150$				$K u^{\prime}=0.130$				$K u^{\prime}=0.110$			
	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4
5	13.5	14.0	14.0	14.5	13.4	13.9	13.9	14.5	13.3	13.8	13.8	14.4	13.2	13.7	13.7	14.3
6	13.5	14.0	14.0	14.5	13.4	13.9	13.9	14.5	13.3	13.8	13.8	14.4	13.2	13.7	13.7	14.3
7	13.6	14.1	14.1	14.6	13.5	14.0	14.0	14.5	13.4	13.9	13.9	14.4	13.2	13.7	13.7	14.3
8	13.7	14.2	14.2	14.7	13.6	14.1	14.1	14.6	13.4	13.9	13.9	14.4	13.3	13.8	13.8	14.3
9	13.8	14.3	14.3	14.8	13.7	14.2	14.2	14.7	13.5	14.0	14.0	14.5	13.3	13.8	13.8	14.3
10	13.9	14.4	14.4	14.9	13.8	14.3	14.3	14.7	13.6	14.1	14.1	14.6	13.4	13.9	13.9	14.4
11	14.0	14.5	14.5	15.0	13.9	14.4	14.4	14.8	13.7	14.2	14.2	14.7	13.5	14.0	14.0	14.5
12	14.1	14.6	14.6	15.1	14.0	14.5	14.5	14.9	13.8	14.3	14.3	14.7	13.6	14.0	14.0	14.5
13	14.2	14.7	14.7	15.2	14.1	14.6	14.6	15.0	13.9	14.3	14.3	14.8	13.6	14.1	14.1	14.6
14	14.4	14.8	14.8	15.3	14.2	14.7	14.7	15.2	14.0	14.4	14.4	14.9	13.7	14.2	14.2	14.7
15	14.5	15.0	15.0	15.4	14.3	14.8	14.8	15.3	14.1	14.5	14.5	15.0	13.8	14.3	14.3	14.8
16	14.6	15.1	15.1	15.6	14.4	14.9	14.9	15.4	14.1	14.6	14.6	15.1	13.9	14.4	14.4	14.8
17	14.7	15.2	15.2	15.7	14.5	15.0	15.0	15.5	14.2	14.7	14.7	15.2	14.0	14.4	14.4	14.9
18	14.8	15.3	15.3	15.8	14.6	15.1	15.1	15.6	14.3	14.8	14.8	15.3	14.0	14.5	14.5	15.0
19	15.0	15.4	15.4	15.9	14.7	15.2	15.2	15.7	14.4	14.9	14.9	15.4	14.1	14.6	14.6	15.1
20	15.1	15.6	15.6	16.0	14.9	15.3	15.3	15.8	14.5	15.0	15.0	15.5	14.2	14.7	14.7	15.2
21	15.2	15.7	15.7	16.2	15.0	15.4	15.4	15.9	14.6	15.1	15.1	15.6	14.3	14.8	14.8	15.2
22	15.3	15.8	15.8	16.3	15.1	15.5	15.5	16.0	14.7	15.2	15.2	15.7	14.4	14.8	14.8	15.3
23	15.4	15.9	15.9	16.4	15.2	15.7	15.7	16.1	14.8	15.3	15.3	15.8	14.5	14.9	14.9	15.4
24	15.6	16.0	16.0	16.5	15.3	15.8	15.8	16.2	14.9	15.4	15.4	15.9	14.5	15.0	15.0	15.5
25	15.7	16.2	16.2	16.6	15.4	15.9	15.9	16.4	15.0	15.5	15.5	16.0	14.6	15.1	15.1	15.6
26	15.8	16.3	16.3	16.8	15.5	16.0	16.0	16.5	15.1	15.6	15.6	16.1	14.7	15.2	15.2	15.7
27	15.9	16.4	16.4	16.9	15.6	16.1	16.1	16.6	15.2	15.7	15.7	16.2	14.8	15.3	15.3	15.7
28	16.0	16.5	16.5	17.0	15.7	16.2	16.2	16.7	15.3	15.8	15.8	16.3	14.9	15.3	15.3	15.8
29	16.1	16.6	16.6	17.1	15.8	16.3	16.3	16.8	15.4	15.9	15.9	16.3	15.0	15.4	15.4	15.9
30	16.1	16.6	16.6	17.1	15.8	16.3	16.3	16.8	15.4	15.9	15.9	16.3	15.0	15.4	15.4	15.9

Table 31

Table 32

Pipe Size = 102"																
Transition Widths (FT)																
	$\mathrm{Ku}^{\prime}=0.165$				$K u^{\prime}=0.150$				$K u^{\prime}=0.130$				$\mathrm{Ku}^{\prime}=0.110$			
	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4
5	15.2	15.9	15.9	16.5	15.2	15.8	15.8	16.4	15.1	15.7	15.7	16.3	15.0	15.6	15.6	16.2
6	15.3	15.9	15.9	16.5	15.2	15.8	15.8	16.4	15.1	15.7	15.7	16.3	15.0	15.6	15.6	16.2
7	15.3	15.9	15.9	16.5	15.2	15.8	15.8	16.4	15.1	15.7	15.7	16.3	15.0	15.6	15.6	16.2
8	15.4	16.0	16.0	16.6	15.3	15.9	15.9	16.4	15.2	15.7	15.7	16.3	15.0	15.6	15.6	16.2
9	15.5	16.1	16.1	16.6	15.4	15.9	15.9	16.5	15.2	15.8	15.8	16.3	15.1	15.6	15.6	16.2
10	15.6	16.2	16.2	16.7	15.5	16.0	16.0	16.6	15.3	15.9	15.9	16.4	15.1	15.7	15.7	16.2
11	15.7	16.3	16.3	16.8	15.6	16.1	16.1	16.7	15.4	15.9	15.9	16.5	15.2	15.7	15.7	16.3
12	15.8	16.4	16.4	16.9	15.7	16.2	16.2	16.8	15.5	16.0	16.0	16.6	15.2	15.8	15.8	16.3
13	15.9	16.5	16.5	17.0	15.8	16.3	16.3	16.9	15.5	16.1	16.1	16.6	15.3	15.9	15.9	16.4
14	16.1	16.6	16.6	17.2	15.9	16.4	16.4	17.0	15.6	16.2	16.2	16.7	15.4	15.9	15.9	16.5
15	16.2	16.7	16.7	17.3	16.0	16.5	16.5	17.1	15.7	16.3	16.3	16.8	15.5	16.0	16.0	16.6
16	16.3	16.8	16.8	17.4	16.1	16.6	16.6	17.2	15.8	16.4	16.4	16.9	15.6	16.1	16.1	16.6
17	16.4	17.0	17.0	17.5	16.2	16.7	16.7	17.3	15.9	16.5	16.5	17.0	15.6	16.2	16.2	16.7
18	16.5	17.1	17.1	17.6	16.3	16.9	16.9	17.4	16.0	16.6	16.6	17.1	15.7	16.3	16.3	16.8
19	16.7	17.2	17.2	17.7	16.4	17.0	17.0	17.5	16.1	16.7	16.7	17.2	15.8	16.3	16.3	16.9
20	16.8	17.3	17.3	17.9	16.5	17.1	17.1	17.6	16.2	16.8	16.8	17.3	15.9	16.4	16.4	17.0
21	16.9	17.4	17.4	18.0	16.6	17.2	17.2	17.7	16.3	16.8	16.8	17.4	16.0	16.5	16.5	17.0
22	17.0	17.6	17.6	18.1	16.8	17.3	17.3	17.8	16.4	16.9	16.9	17.5	16.0	16.6	16.6	17.1
23	17.1	17.7	17.7	18.2	16.9	17.4	17.4	17.9	16.5	17.0	17.0	17.6	16.1	16.7	16.7	17.2
24	17.3	17.8	17.8	18.3	17.0	17.5	17.5	18.1	16.6	17.1	17.1	17.7	16.2	16.7	16.7	17.3
25	17.4	17.9	17.9	18.5	17.1	17.6	17.6	18.2	16.7	17.2	17.2	17.8	16.3	16.8	16.8	17.4
26	17.5	18.0	18.0	18.6	17.2	17.7	17.7	18.3	16.8	17.3	17.3	17.9	16.4	16.9	16.9	17.4
27	17.6	18.2	18.2	18.7	17.3	17.8	17.8	18.4	16.9	17.4	17.4	18.0	16.5	17.0	17.0	17.5
28	17.7	18.3	18.3	18.8	17.4	18.0	18.0	18.5	17.0	17.5	17.5	18.1	16.5	17.1	17.1	17.6
29	17.8	18.4	18.4	18.9	17.5	18.1	18.1	18.6	17.1	17.6	17.6	18.2	16.6	17.2	17.2	17.7
30	17.8	18.4	18.4	18.9	17.5	18.1	18.1	18.6	17.1	17.6	17.6	18.2	16.6	17.2	17.2	17.7

Table 33

Table 34

Pipe Size = 114"																
Transition Widths (FT)																
	$\mathrm{Ku}^{\prime}=0.165$				$K u^{\prime}=0.150$				$K u^{\prime}=0.130$				$K u^{\prime}=0.110$			
	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4
5	17.0	17.7	17.7	18.4	17.0	17.7	17.7	18.4	16.9	17.6	17.6	18.3	16.8	17.5	17.5	18.2
6	17.0	17.7	17.7	18.4	17.0	17.7	17.7	18.4	16.9	17.6	17.6	18.3	16.8	17.5	17.5	18.2
7	17.1	17.7	17.7	18.4	17.0	17.7	17.7	18.4	16.9	17.6	17.6	18.3	16.8	17.5	17.5	18.2
8	17.1	17.8	17.8	18.4	17.0	17.7	17.7	18.4	16.9	17.6	17.6	18.3	16.8	17.5	17.5	18.2
9	17.2	17.9	17.9	18.5	17.1	17.7	17.7	18.4	16.9	17.6	17.6	18.3	16.8	17.5	17.5	18.2
10	17.3	17.9	17.9	18.6	17.2	17.8	17.8	18.4	17.0	17.6	17.6	18.3	16.8	17.5	17.5	18.2
11	17.4	18.0	18.0	18.7	17.3	17.9	17.9	18.5	17.1	17.7	17.7	18.3	16.9	17.5	17.5	18.2
12	17.5	18.1	18.1	18.8	17.4	18.0	18.0	18.6	17.2	17.8	17.8	18.4	16.9	17.6	17.6	18.2
13	17.6	18.3	18.3	18.9	17.5	18.1	18.1	18.7	17.2	17.9	17.9	18.5	17.0	17.6	17.6	18.2
14	17.7	18.4	18.4	19.0	17.6	18.2	18.2	18.8	17.3	17.9	17.9	18.6	17.1	17.7	17.7	18.3
15	17.9	18.5	18.5	19.1	17.7	18.3	18.3	18.9	17.4	18.0	18.0	18.6	17.2	17.8	17.8	18.4
16	18.0	18.6	18.6	19.2	17.8	18.4	18.4	19.0	17.5	18.1	18.1	18.7	17.2	17.8	17.8	18.4
17	18.1	18.7	18.7	19.3	17.9	18.5	18.5	19.1	17.6	18.2	18.2	18.8	17.3	17.9	17.9	18.5
18	18.2	18.8	18.8	19.4	18.0	18.6	18.6	19.2	17.7	18.3	18.3	18.9	17.4	18.0	18.0	18.6
19	18.3	19.0	19.0	19.6	18.1	18.7	18.7	19.3	17.8	18.4	18.4	19.0	17.5	18.1	18.1	18.7
20	18.5	19.1	19.1	19.7	18.2	18.8	18.8	19.4	17.9	18.5	18.5	19.1	17.6	18.2	18.2	18.8
21	18.6	19.2	19.2	19.8	18.3	18.9	18.9	19.5	18.0	18.6	18.6	19.2	17.6	18.2	18.2	18.8
22	18.7	19.3	19.3	19.9	18.4	19.0	19.0	19.6	18.1	18.7	18.7	19.3	17.7	18.3	18.3	18.9
23	18.8	19.4	19.4	20.0	18.6	19.2	19.2	19.8	18.2	18.8	18.8	19.4	17.8	18.4	18.4	19.0
24	18.9	19.5	19.5	20.2	18.7	19.3	19.3	19.9	18.3	18.9	18.9	19.5	17.9	18.5	18.5	19.1
25	19.1	19.7	19.7	20.3	18.8	19.4	19.4	20.0	18.4	19.0	19.0	19.6	18.0	18.6	18.6	19.2
26	19.2	19.8	19.8	20.4	18.9	19.5	19.5	20.1	18.5	19.1	19.1	19.7	18.0	18.6	18.6	19.2
27	19.3	19.9	19.9	20.5	19.0	19.6	19.6	20.2	18.6	19.2	19.2	19.8	18.1	18.7	18.7	19.3
28	19.4	20.0	20.0	20.6	19.1	19.7	19.7	20.3	18.7	19.3	19.3	19.9	18.2	18.8	18.8	19.4
29	19.5	20.1	20.1	20.7	19.2	19.8	19.8	20.4	18.8	19.4	19.4	20.0	18.3	18.9	18.9	19.5
30	19.5	20.1	20.1	20.7	19.2	19.8	19.8	20.4	18.8	19.4	19.4	20.0	18.3	18.9	18.9	19.5

Table 35

						$\stackrel{\Gamma}{\dot{O}}$			$\stackrel{\square}{\square}$	$\stackrel{\square}{9}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\square}$		$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\circ}$	$\stackrel{\varrho}{\dot{O}}$	$\underset{\sim}{\circ}$	$\stackrel{\circ}{\circ}$		$\stackrel{\bullet}{\stackrel{+}{\circ}}$	$\stackrel{\ominus}{\dot{O}}$	$\hat{\circ}$	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	난		$\stackrel{\circ}{\mathrm{N}}$	O.	$\stackrel{\rightharpoonup}{\dot{N}}$	No			¢
			$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{\dot{e}} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$		$\stackrel{\infty}{\infty}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\underset{\sim}{\infty}}{\stackrel{\circ}{0}}$	$\begin{aligned} & \mathrm{L} \\ & \underset{\sim}{\infty} \end{aligned}$		$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\infty}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\stackrel{O}{0}$	$\stackrel{-}{\dot{O}}$	$\stackrel{N}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & n \\ & \end{aligned}$		$\stackrel{\varrho}{\dot{\sigma}}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{O}} \end{aligned}$	$\stackrel{\ominus}{\odot}$	N-		$\stackrel{\text { - }}{\text { - }}$
	$\begin{array}{\|c} 11 \\ \underline{y} \end{array}$	$\begin{array}{c\|c} \stackrel{N}{\circ} \\ \stackrel{\circ}{2} \\ & \underset{\sim}{\infty} \\ \hline \end{array}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$		$\stackrel{\infty}{\infty}$		$\begin{gathered} \infty \\ \dot{\infty} \\ \stackrel{0}{2} \end{gathered}$	$\begin{gathered} \infty \\ \infty \\ \infty \\ \hline \end{gathered}$	$\stackrel{+}{\infty}$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}\right.$		$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	$\underset{\sim}{\hat{\infty}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\infty}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\Gamma}{\dot{\sigma}}$	$\stackrel{\text { No }}{\sim}$			$\stackrel{\varrho}{\stackrel{\circ}{\circ}}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{array}{\|c\|} \circ \\ \stackrel{\circ}{\circ} \\ \stackrel{2}{2} \end{array}$	$\stackrel{\ominus}{\circ}$	$\stackrel{\mathrm{N}}{2}$		$\stackrel{\text { ®}}{\sim}$
		$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{2}} \stackrel{0}{\sim}$	$\stackrel{\circ}{\stackrel{\circ}{-}}$	$\stackrel{\circ}{\stackrel{\circ}{-}}$	$\stackrel{\ominus}{\circ} \stackrel{\ominus}{\stackrel{\circ}{\sim}}$		$\stackrel{\stackrel{1}{\mathrm{C}}}{2}$		$\stackrel{\ominus}{\stackrel{\circ}{\sim}}$	$\stackrel{i}{i}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$		$\stackrel{9}{\stackrel{\rightharpoonup}{\tau}}$	-	$\begin{array}{\|l\|} \hline \infty \\ \infty \end{array}$	$\stackrel{\Gamma}{\sim}$	$\begin{gathered} \underset{1}{\infty} \\ \underset{\sim}{0} \end{gathered}$		$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \end{gathered}$	$\left\lvert\, \begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\sim}{\infty}$			$\begin{gathered} \hat{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{0} \end{aligned}$	$\stackrel{\circ}{\circ}$	Oj		\bigcirc
		¢	$\stackrel{N}{\stackrel{\rightharpoonup}{\circ}}$		$\underset{\sim}{\sim}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\stackrel{\text { N- }}{\substack{0}}$		$\stackrel{\sim}{\circ}$	$\begin{array}{\|c\|} \stackrel{1}{\circ} \\ \stackrel{\circ}{2} \end{array}$	$\stackrel{M}{\dot{\sim}}$	$\dot{\sim}$			$\stackrel{\sim}{\circ}$	$\stackrel{\odot}{\circ}$	$\stackrel{\hat{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{\circ}} \end{aligned}$		$\stackrel{\dot{\circ}}{\dot{\circ}}$	$\stackrel{O}{\mathrm{~N}}$	$\stackrel{-}{\sim}$	$\begin{gathered} \mathrm{N} \\ \underset{N}{n} \end{gathered}$			$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\bullet}{\infty}$	$\stackrel{\hat{N}}{\hat{N}}$	$\stackrel{\infty}{\sim}$		$\underset{\sim}{\infty}$
			$\stackrel{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}}$	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\underset{\sim}{\infty}} \underset{\sim}{\infty}$				$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\mid \underset{\sim}{\bullet}$	$\begin{aligned} & \bullet \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\circ}$		$$	$\stackrel{\circ}{\infty}$	$\dot{0}$	$\stackrel{\Gamma}{\sigma}$	$\stackrel{\text { N}}{\text { ó }}$		$\dot{\circ}$	$\stackrel{+}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\Gamma} \\ & \stackrel{1}{2} \end{aligned}$		$\stackrel{\varphi}{\circ}$	$\stackrel{\hat{N}}{\dot{\circ}}$	$\stackrel{\infty}{\dot{Q}}$	$\stackrel{\dot{\partial}}{\dot{\phi}}$	$\stackrel{O}{\mathrm{~N}}$	ci		$\stackrel{-}{\text { ¢ }}$
	$\begin{aligned} & \text { III } \\ & \overrightarrow{2} \end{aligned}$		$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$			$\underset{\sim}{\infty}$	$\begin{aligned} & \Omega \\ & \infty \\ & \infty \end{aligned}$	$\mid \underset{\sim}{\underset{\infty}{\infty}}$	$\begin{gathered} \dot{0} \\ \underset{\sim}{\infty} \end{gathered}$	\propto		$$	$\stackrel{\circ}{\infty}$	0	앙	প		$\stackrel{\varrho}{\stackrel{\circ}{\circ}}$	$\underset{\sim}{\sigma}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\stackrel{\text { }}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{0}{\square}$	$\hat{\sim}$	$\stackrel{\infty}{\dot{\sim}}$	$\stackrel{\dot{\infty}}{\dot{\phi}}$	$\stackrel{O}{\mathrm{~N}}$	두		-
			N	N	N	-	$\stackrel{\infty}{\sim}$		$\stackrel{\infty}{\stackrel{\circ}{\sim}}$	$\stackrel{9}{\stackrel{9}{\sim}}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{-}{\circ}$		$\begin{gathered} N \\ \infty \\ \infty \end{gathered}$	¢	$\stackrel{m}{\infty}$	$\underset{\sim}{\infty}$	on of		$\begin{aligned} & \bullet \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\infty}$		O-	$\bar{\circ}$	$\stackrel{N}{\dot{O}}$	$\stackrel{\varrho}{\dot{\circ}}$	$\stackrel{\circ}{\circ}$	¢		$\stackrel{\sim}{0}$
		¢	oj				oj	¢	$\stackrel{\varrho}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{+}{\circ}$	$\stackrel{\stackrel{\circ}{\mathrm{O}}}{\mathrm{O}}$	$\stackrel{\circ}{\dot{\sigma}}$		$\hat{\gamma}$	$\stackrel{\infty}{\circ}$	$\stackrel{\circ}{\circ}$				$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{m}{\sim}$	$\begin{gathered} 10 \\ \stackrel{\sim}{\mathrm{~N}} \end{gathered}$	$\stackrel{\bullet}{\sim}$		-	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\text { in }}$	$\stackrel{\stackrel{0}{\mathrm{~N}}}{\mid}$	$\underset{\stackrel{\rightharpoonup}{N}}{\stackrel{-}{\prime}}$	$\stackrel{\sim}{\sim}$		$\stackrel{\text { N }}{\stackrel{\text { N }}{\sim}}$
		¢	on		$\stackrel{c}{\infty} \underset{\sim}{\infty}$	$$			$\stackrel{N}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{\dot{\circ}}$		$\dot{\sigma}$	N	$\stackrel{\varrho}{\circ}$	$\stackrel{\rightharpoonup}{\sigma}$			$\stackrel{\bullet}{\stackrel{+}{\circ}}$	$\stackrel{\hat{O}}{\hat{O}}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	oj		৪	$\stackrel{-}{\mathrm{N}}$	$\stackrel{m}{\sim}$	$\begin{gathered} \underset{\sim}{\dot{N}} \end{gathered}$	$\stackrel{\sim}{\sim}$	$\stackrel{\bullet}{\sim}$		$\stackrel{\bigcirc}{\text { ® }}$
	$\begin{aligned} & 111 \\ & \underline{y} \end{aligned}$		مِ		$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$			$\stackrel{0}{\infty} \underset{\sim}{\infty}$	$\begin{gathered} \hat{\infty} \\ \boldsymbol{o}^{\prime} \end{gathered}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \propto \end{aligned}\right.$	$\underset{\sim}{\infty}$	$\stackrel{\circ}{\dot{\circ}}$		$\stackrel{\Gamma}{\sigma}$	$\stackrel{\text { N }}{\text { ¢ }}$	$\stackrel{\varrho}{\dot{\rho}}$	$\stackrel{\rightharpoonup}{\dot{\circ}}$	on		$\stackrel{\bullet}{\stackrel{+}{\circ}}$	$\underset{\dot{O}}{\hat{o}}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	oŋ		$\stackrel{\sim}{c}$	$\stackrel{-}{\dot{N}}$	$\underset{\sim}{\infty}$	$\stackrel{\star}{\mathrm{N}}$	$\stackrel{\sim}{\sim}$			$\stackrel{\bigcirc}{\text { - }}$
		$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\circ}{1}} \stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$		$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{\sim}{-}$	$\stackrel{\text { - }}{\sim}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\circ}{\infty}$	$\stackrel{-}{\circ}$	$\begin{gathered} \underset{\infty}{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$		$\stackrel{\oplus}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\circ}{\propto}$	$\stackrel{\hat{\infty}}{\stackrel{\infty}{\infty}}$			$\stackrel{\circ}{\dot{\circ}}$	$\underset{\dot{O}}{\square}$	ก	oj			$\begin{array}{\|c} \stackrel{\circ}{\circ} \\ \stackrel{\sim}{2} \end{array}$	$\stackrel{\varphi}{\dot{\circ}}$	$\stackrel{\hat{\alpha}}{\hat{\sigma}}$	$\stackrel{\infty}{\dot{\rho}}$	$\stackrel{\text { Ni}}{ }$		O-
			o	$\stackrel{\varrho}{\stackrel{\circ}{+}}$	$\stackrel{\substack{c \\ \stackrel{\rightharpoonup}{2} \\ \hline \\ \hline}}{ }$				$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\bullet}{\circ}$	$\hat{\dot{o}}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$		$\stackrel{\sigma}{\dot{\sigma}}$	N	i	$\stackrel{\substack{\mathrm{N}}}{ }$	$\stackrel{\text { ®}}{\sim}$		$\stackrel{\circ}{\sim}$	$\stackrel{\bullet}{\mathrm{N}}$	\hat{N}			$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\Gamma}{\dot{N}}$	$\stackrel{N}{\text { N}}$	$\stackrel{m}{N}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	$\stackrel{\bigcirc}{\sim}$		$\stackrel{\bullet}{\stackrel{\circ}{\sim}}$
	$\begin{aligned} & \stackrel{10}{6} \\ & \hline \end{aligned}$	$\stackrel{m}{0}$	oi	$\stackrel{\circ}{\infty}$		$\stackrel{c}{\infty} \underset{\substack{\mathrm{o}}}{\stackrel{\rightharpoonup}{\infty}}$	${ }_{\sim}^{\sim}$	${ }^{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\underset{\sim}{\infty}$	0	$\stackrel{\Gamma}{\Gamma}$		$\stackrel{\varrho}{\dot{\sigma}}$	\%	$\stackrel{\stackrel{\circ}{\mathrm{O}}}{\mathrm{O}}$	$\stackrel{\odot}{\circ}$	O-		$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{O}{\mathrm{~N}}$	$\bar{\square}$	N்		$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\dot{N}}$	$\stackrel{ִ}{\text { ® }}$	$\stackrel{\hat{N}}{\hat{N}}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$			¢
	$\begin{aligned} & 11 \\ & \stackrel{3}{2} \end{aligned}$		$\begin{aligned} & \text { po } \end{aligned}$		$\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \infty \\ \infty \end{array}$				$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{0}{\sim} \end{aligned}$	$\underset{\infty}{\infty}$	$\dot{0}$	$\bar{\circ}$		$\stackrel{m}{\circ}$	\%	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{2} \end{aligned}\right.$	$\stackrel{\circ}{\dot{\sigma}}$			$\stackrel{\infty}{\dot{\circ}}$	$\underset{\sim}{\mathrm{N}}$		No		$\stackrel{m}{\sim}$	$\stackrel{\rightharpoonup}{\dot{N}}$	$\stackrel{\bullet}{\mathrm{N}}$	$\begin{array}{\|c} \hat{N} \\ \stackrel{y}{*} \end{array}$	$\underset{\sim}{\infty}$			$\stackrel{\text { ® }}{\text { ¢ }}$
		$\stackrel{\overline{0}}{\stackrel{0}{2}} \stackrel{\infty}{\sim}$			$\stackrel{\infty}{\stackrel{\infty}{~}} \stackrel{9}{\circ}$			$\stackrel{\Gamma}{\infty}$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{c} \end{gathered}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \dot{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$		$\begin{gathered} \bullet \\ \infty \\ \stackrel{\circ}{0} \\ \hline \end{gathered}$	$\stackrel{\infty}{\sim}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}\right.$	$\stackrel{\circ}{\dot{\gamma}}$			$\stackrel{N}{\sim}$	$\stackrel{\varrho}{\dot{O}}$	$\stackrel{\square}{\square}$				$\stackrel{\infty}{\dot{\circ}} \stackrel{1}{\mid}$	$\dot{\circ}$	$\stackrel{O}{\mathrm{~N}}$	No	ㅅ		$\stackrel{\text { m }}{\text { c }}$
		\bigcirc	\bigcirc		- ∞	∞ o			\mp	N	$\stackrel{m}{\square}$	\pm		$\stackrel{\square}{\square}$	\bigcirc	\wedge	\ldots	앙		N	-	\approx	へ		$\stackrel{4}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	へ	$\stackrel{\sim}{\sim}$	\%		-

Table 36

Pipe Size = 126"																
Transition Widths (FT)																
	$\mathrm{Ku}^{\prime}=0.165$				$K u^{\prime}=0.150$				$K u^{\prime}=0.130$				$K u^{\prime}=0.110$			
	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4	Type 1	Type 2	Type 3	Type 4
5	18.8	19.5	19.5	20.3	18.7	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
6	18.8	19.5	19.5	20.3	18.7	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
7	18.8	19.5	19.5	20.3	18.7	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
8	18.8	19.5	19.5	20.3	18.7	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
9	18.8	19.6	19.6	20.3	18.7	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
10	18.9	19.6	19.6	20.3	18.8	19.5	19.5	20.3	18.6	19.4	19.4	20.2	18.5	19.3	19.3	20.1
11	19.0	19.7	19.7	20.4	18.9	19.6	19.6	20.3	18.7	19.4	19.4	20.2	18.5	19.3	19.3	20.1
12	19.1	19.8	19.8	20.5	19.0	19.7	19.7	20.4	18.8	19.4	19.4	20.2	18.5	19.3	19.3	20.1
13	19.2	19.9	19.9	20.6	19.1	19.8	19.8	20.4	18.8	19.5	19.5	20.2	18.6	19.3	19.3	20.1
14	19.3	20.0	20.0	20.7	19.2	19.8	19.8	20.5	18.9	19.6	19.6	20.3	18.7	19.4	19.4	20.1
15	19.5	20.1	20.1	20.8	19.3	19.9	19.9	20.6	19.0	19.7	19.7	20.4	18.7	19.4	19.4	20.1
16	19.6	20.3	20.3	20.9	19.4	20.0	20.0	20.7	19.1	19.8	19.8	20.4	18.8	19.5	19.5	20.2
17	19.7	20.4	20.4	21.0	19.5	20.2	20.2	20.8	19.2	19.9	19.9	20.5	18.9	19.6	19.6	20.2
18	19.8	20.5	20.5	21.2	19.6	20.3	20.3	20.9	19.3	20.0	20.0	20.6	19.0	19.6	19.6	20.3
19	19.9	20.6	20.6	21.3	19.7	20.4	20.4	21.0	19.4	20.0	20.0	20.7	19.0	19.7	19.7	20.4
20	20.1	20.7	20.7	21.4	19.8	20.5	20.5	21.1	19.5	20.1	20.1	20.8	19.1	19.8	19.8	20.5
21	20.2	20.8	20.8	21.5	19.9	20.6	20.6	21.3	19.6	20.2	20.2	20.9	19.2	19.9	19.9	20.5
22	20.3	21.0	21.0	21.6	20.0	20.7	20.7	21.4	19.7	20.3	20.3	21.0	19.3	20.0	20.0	20.6
23	20.4	21.1	21.1	21.8	20.1	20.8	20.8	21.5	19.8	20.4	20.4	21.1	19.4	20.0	20.0	20.7
24	20.5	21.2	21.2	21.9	20.2	20.9	20.9	21.6	19.9	20.5	20.5	21.2	19.5	20.1	20.1	20.8
25	20.7	21.3	21.3	22.0	20.4	21.0	21.0	21.7	20.0	20.6	20.6	21.3	19.5	20.2	20.2	20.9
26	20.8	21.4	21.4	22.1	20.5	21.1	21.1	21.8	20.0	20.7	20.7	21.4	19.6	20.3	20.3	20.9
27	20.9	21.6	21.6	22.2	20.6	21.2	21.2	21.9	20.1	20.8	20.8	21.5	19.7	20.4	20.4	21.0
28	21.0	21.7	21.7	22.3	20.7	21.4	21.4	22.0	20.2	20.9	20.9	21.6	19.8	20.4	20.4	21.1
29	21.1	21.8	21.8	22.5	20.8	21.5	21.5	22.1	20.3	21.0	21.0	21.7	19.9	20.5	20.5	21.2
30	21.1	21.8	21.8	22.5	20.8	21.5	21.5	22.1	20.3	21.0	21.0	21.7	19.9	20.5	20.5	21.2

Table 37

Table 38

Table 39

Table 40
DESIGN VALUES OF SETTLEMENT RATIO

Installation and Foundation Condition	Settlement Ratio $r_{\text {sd }}$	
	Usual Range	Design Value
Positive Projecting.	0.0 to +1.0	
Rock or Unyielding Soil	+1.0	+1.0
*Ordinary Soil	+0.5 to +0.8	+0.7
Yielding Soil.	0.0 to +0.5	+0.3
Zero Projecting.		0.0
Negative Projecting..	-1.0 to 0.0	
$\mathrm{p}^{\prime}=0.5$		-0.1
$\mathrm{p}^{\prime}=1.0$		-0.3
$p^{\prime}=1.5 \ldots \ldots .$.		-0.5
$\mathrm{p}^{\prime}=2.0$		-1.0

*The value of the settlement ratio depends on the degree of compaction of the fill material adjacent to the sides of the pipe. With good construction methods resulting in proper compaction of bedding and sidefill materials, a settlement ratio design value of +0.5 is recommended.

Table 41
DESIGN VALUES OF COEFFICIENT OF COHESION

Type of Soil	Values of c
Clay	
Soft...	40
Medium ..	250
Hard..	1000
Sand	
Loose Dry............	0
Silty ...	100
Dense...	300
Top Soil	
Saturated.........	100

Table 42

Table 43
HIGHWAY LOADS ON HORIZONTAL ELLIPTICAL PIPE

Table 44
POUNDS PER LINEAR FOOT

Table 45
HIGHWAY LOADS ON ARCH PIPE
POUNDS PER LINEAR FOOT

Table 46

PRESSURE COEFFICIENTS FOR A SINGLE LOAD

Values of C $p=\frac{C P}{R_{S}{ }^{2}}$ pounds per square foot $P=$ wheel load, pounds $R_{S}=$ radius of stiffness of rigid pavement slab, feet											
	$\mathrm{X} / \mathrm{R}_{\mathrm{S}}$										
R_{S}	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.0	. 113	. 105	. 089	. 068	. 048	. 032	. 020	. 011	. 006	. 002	. 000
0.4	. 101	. 095	. 082	. 065	. 047	. 033	. 021	. 011	. 004	. 001	. 000
0.8	. 089	. 084	. 074	. 061	. 045	. 033	. 022	. 012	. 005	. 002	. 001
1.2	. 076	. 072	. 065	. 054	. 043	. 032	. 022	. 014	. 008	. 005	. 003
1.6	. 062	. 059	. 054	. 047	. 039	. 030	. 022	. 016	. 011	. 007	. 005
2.0	. 051	. 049	. 046	. 042	. 035	. 028	. 022	. 016	. 011	. 008	. 006
2.4	. 043	. 041	. 039	. 036	. 030	. 026	. 021	. 016	. 011	. 008	. 006
2.8	. 037	. 036	. 033	. 031	. 027	. 023	. 019	. 015	. 011	. 009	. 006
3.2	. 032	. 030	. 029	. 026	. 024	. 021	. 018	. 014	. 011	. 009	. 007
3.6	. 027	. 026	. 025	. 023	. 021	. 019	. 016	. 014	. 011	. 009	. 007
4.0	. 024	. 023	. 022	. 020	. 019	. 018	. 015	. 013	. 011	. 009	. 007
4.4	. 020	. 020	. 019	. 018	. 017	. 015	. 014	. 012	. 010	. 009	. 007
4.8	. 018	. 017	. 017	. 016	. 015	. 013	. 012	. 011	. 009	. 008	. 007
5.2	. 015	. 015	. 014	. 014	. 013	. 012	. 011	. 010	. 008	. 007	. 006
5.6	. 014	. 013	. 013	. 012	. 011	. 010	. 010	. 009	. 008	. 007	. 006
6.0	. 012	. 012	. 011	. 011	. 010	. 009	. 009	. 008	. 007	. 007	. 006
6.4	. 011	. 010	. 010	. 010	. 009	. 008	. 008	. 007	. 007	. 006	. 005
6.8	. 010	. 009	. 009	. 009	. 008	. 008	. 007	. 007	. 006	. 006	. 005
7.2	. 009	. 008	. 008	. 008	. 008	. 007	. 007	. 006	. 006	. 006	. 005
7.6	. 008	. 008	. 008	. 007	. 007	. 007	. 006	. 006	. 006	. 005	. 005
8.0	. 007	. 007	. 007	. 007	. 006	. 006	. 006	. 006	. 005	. 005	. 005

Table 47
PRESSURE COEFFICIENTS FOR TWO LOADS SPACED 0.8Rs APART

Values of C $p=\frac{C P}{R_{S}^{2}}$ pounds per square foot $P=$ wheel load, pounds $R_{S}=$ radius of stiffness of rigid pavement slab, feet											
H	$\mathrm{X} / \mathrm{R}_{\mathrm{S}}$										
$\overline{R_{S}}$	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.0	. 210	. 198	. 168	. 130	. 092	. 062	. 038	. 022	. 011	. 004	. 000
0.4	. 190	. 181	. 156	. 126	. 092	. 064	. 040	. 023	. 010	. 002	. 000
0.8	. 168	. 160	. 140	. 117	. 088	. 063	. 042	. 024	. 010	. 003	. 001
1.2	. 144	. 139	. 124	. 106	. 083	. 062	. 043	. 027	. 013	. 007	. 004
1.6	. 118	. 115	. 105	. 094	. 076	. 060	. 044	. 030	. 020	. 014	. 009
2.0	. 098	. 095	. 089	. 081	. 070	. 056	. 043	. 032	. 023	. 017	. 012
2.4	. 083	. 080	. 076	. 069	. 061	. 050	. 040	. 031	. 023	. 017	. 012
2.8	. 071	. 069	. 066	. 060	. 053	. 045	. 037	. 029	. 022	. 017	. 012
3.2	. 061	. 059	. 057	. 052	. 046	. 040	. 034	. 028	. 022	. 017	. 013
3.6	. 052	. 051	. 049	. 046	. 041	. 036	. 032	. 027	. 022	. 018	. 014
4.0	. 045	. 044	. 042	. 040	. 037	. 034	. 030	. 026	. 022	. 018	. 015
4.4	. 039	. 038	. 037	. 035	. 033	. 030	. 027	. 024	. 021	. 017	. 015
4.8	. 034	. 034	. 033	. 031	. 029	. 027	. 024	. 021	. 019	. 016	. 014
5.2	. 030	. 029	. 028	. 027	. 025	. 023	. 021	. 019	. 017	. 015	. 013
5.6	. 026	. 026	. 025	. 024	. 022	. 021	. 019	. 018	. 016	. 014	. 012
6.0	. 023	. 023	. 022	. 021	. 020	. 019	. 017	. 016	. 015	. 013	. 011
6.4	. 021	. 021	. 020	. 019	. 018	. 017	. 016	. 015	. 014	. 012	. 011
6.8	. 019	. 019	. 018	. 018	. 017	. 016	. 015	. 014	. 013	. 012	. 010
7.2	. 017	. 017	. 016	. 016	. 015	. 014	. 013	. 013	. 012	. 011	. 010
7.6	. 016	. 015	. 015	. 015	. 014	. 013	. 012	. 012	. 011	. 010	. 009
8.0	. 014	. 014	. 014	. 013	. 013	. 012	. 012	. 011	. 010	. 010	. 009

Table 48
PRESSURE COEFFICIENTS FOR TWO LOADS SPACED 1.6Rs APART

Values of C $p=\frac{C P}{R_{\mathbb{S}}^{2}}$ pounds per square foot $P=$ wheel load, pounds $R_{S}=$ radius of stiffness of rigid pavement slab, feet											
H	$\mathrm{X} / \mathrm{R}_{\mathrm{S}}$										
$\overline{R_{S}}$	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.0	. 178	. 167	. 142	. 112	. 080	. 054	. 034	. 019	. 009	. 004	. 000
0.4	164	. 156	. 136	. 109	. 080	. 056	. 036	. 019	. 008	. 002	. 000
0.8	. 147	. 141	. 126	. 103	. 078	. 057	. 037	. 020	. 008	. 002	. 001
1.2	. 128	. 124	. 106	. 094	. 074	. 056	. 039	. 023	. 012	. 006	. 004
1.6	. 108	. 105	. 097	. 082	. 070	. 054	. 040	. 028	. 019	. 014	. 009
2.0	. 092	. 090	. 084	. 075	. 065	. 052	. 040	. 030	. 022	. 017	. 012
2.4	. 079	. 076	. 072	. 065	. 056	. 047	. 038	. 029	. 022	. 017	. 012
2.8	. 068	. 066	. 062	. 058	. 050	. 043	. 035	. 028	. 022	. 017	. 012
3.2	. 058	. 056	. 054	. 050	. 044	. 038	. 032	. 027	. 022	. 017	. 012
3.6	. 050	. 049	. 047	. 044	. 040	. 035	. 030	. 026	. 022	. 017	. 013
4.0	. 043	. 042	. 041	. 039	. 036	. 033	. 030	. 026	. 022	. 018	. 015
4.4	. 038	. 037	. 036	. 034	. 032	. 029	. 026	. 023	. 020	. 016	. 014
4.8	. 033	. 032	. 031	. 030	. 028	. 026	. 024	. 021	. 018	. 015	. 013
5.2	. 029	. 028	. 027	. 026	. 025	. 023	. 021	. 019	. 016	. 014	. 012
5.6	. 025	. 025	. 024	. 023	. 022	. 020	. 019	. 017	. 015	. 013	. 012
6.0	. 023	. 022	. 022	. 021	. 019	. 018	. 017	. 016	. 014	. 013	. 011
6.4	. 020	. 020	. 019	. 019	. 018	. 016	. 015	. 015	. 013	. 012	. 011
6.8	. 018	. 018	. 018	. 017	. 016	. 015	. 014	. 013	. 012	. 011	. 010
7.2	. 017	. 016	. 016	. 015	. 015	. 014	. 013	. 013	. 012	. 011	. 010
7.6	. 015	. 015	. 014	. 014	. 014	. 013	. 012	. 012	. 011	. 010	. 010
8.0	. 014	. 014	. 013	. 013	. 013	. 012	. 011	. 011	. 010	. 010	. 009

Table 49
PRESSURE COEFFICIENTS FOR TWO LOADS SPACED 2.4R $\mathbf{S}_{\mathbf{S}}$ APART

Values of C $p=\frac{C P}{R_{S}^{2}}$ pounds per square foot $P=$ wheel load, pounds $\boldsymbol{R}_{\boldsymbol{S}}=$ radius of stiffness of rigid pavement slab, feet											
	X / R										
R_{S}	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.0	. 137	. 130	. 112	. 088	. 065	. 044	. 028	. 014	. 007	. 003	. 000
0.4	. 130	. 125	. 109	. 087	. 066	. 047	. 028	. 013	. 005	. 001	. 000
0.8	. 121	. 117	. 104	. 085	. 066	. 048	. 030	. 014	. 006	. 002	. 001
1.2	. 109	. 105	. 096	. 079	. 064	. 048	. 033	. 018	. 012	. 006	. 005
1.6	. 095	. 092	. 084	. 072	. 060	. 047	. 035	. 025	. 018	. 012	. 009
2.0	. 083	. 081	. 077	. 068	. 057	. 046	. 035	. 026	. 020	. 015	. 010
2.4	. 070	. 069	. 065	. 059	. 052	. 044	. 034	. 026	. 020	. 015	. 011
2.8	. 062	. 060	. 058	. 053	. 046	. 039	. 033	. 027	. 020	. 015	. 011
3.2	. 053	. 052	. 050	. 046	. 041	. 035	. 032	. 026	. 020	. 016	. 012
3.6	. 046	. 045	. 044	. 042	. 038	. 034	. 030	. 026	. 021	. 017	. 013
4.0	. 040	. 040	. 039	. 037	. 035	. 032	. 029	. 025	. 021	. 017	. 014
4.4	. 036	. 035	. 034	. 033	. 031	. 028	. 025	. 022	. 019	. 016	. 013
4.8	. 031	. 031	. 030	. 029	. 027	. 025	. 022	. 020	. 017	. 015	. 012
5.2	. 027	. 027	. 026	. 025	. 024	. 022	. 020	. 018	. 016	. 014	. 012
5.6	. 024	. 023	. 023	. 022	. 021	. 020	. 018	. 017	. 015	. 013	. 011
6.0	. 022	. 021	. 021	. 020	. 019	. 018	. 017	. 015	. 014	. 012	. 011
6.4	. 019	. 019	. 019	. 018	. 017	. 016	. 015	. 014	. 013	. 012	. 010
6.8	. 018	. 017	. 017	. 016	. 016	. 015	. 014	. 013	. 012	. 011	. 010
7.2	. 016	. 016	. 016	. 015	. 014	. 014	. 013	. 012	. 011	. 010	. 009
7.6	. 015	. 014	. 014	. 014	. 013	. 013	. 012	. 011	. 011	. 010	. 009
8.0	. 013	. 013	. 013	. 013	. 012	. 012	. 011	. 011	. 010	. 009	. 009

Table 50
PRESSURE COEFFICIENTS FOR TWO LOADS SPACED 3.2R $\mathbf{s}_{\text {s }}$ APART

Values of C $p=\frac{C P}{R_{S}^{2}}$ pounds per square foot $P=$ wheel load, pounds $R_{S}=$ radius of stiffness of rigid pavement slab, feet											
$\frac{H}{R_{S}}$	X/RS										
	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.0	. 097	. 093	. 080	. 065	. 048	. 032	. 020	. 011	. 004	. 000	. 000
0.4	. 096	. 092	. 079	. 067	. 050	. 034	. 020	. 010	. 003	. 000	. 000
0.8	. 092	. 088	. 078	. 066	. 051	. 036	. 021	. 010	. 003	. 000	. 000
1.2	. 086	. 082	. 074	. 066	. 050	. 038	. 025	. 014	. 007	. 003	. 001
1.6	. 077	. 075	. 068	. 060	. 049	. 039	. 030	. 021	. 015	. 011	. 007
2.0	. 070	. 068	. 063	. 057	. 048	. 040	. 031	. 023	. 017	. 013	. 009
2.4	. 061	. 060	. 056	. 051	. 045	. 038	. 030	. 023	. 017	. 013	. 010
2.8	. 056	. 054	. 052	. 048	. 042	. 036	. 029	. 023	. 018	. 013	. 010
3.2	. 048	. 046	. 044	. 041	. 037	. 032	. 028	. 023	. 018	. 014	. 010
3.6	. 043	. 041	. 040	. 038	. 034	. 030	. 027	. 022	. 019	. 015	. 012
4.0	. 038	. 037	. 036	. 035	. 032	. 029	. 026	. 022	. 019	. 016	. 013
4.4	. 033	. 033	. 032	. 031	. 029	. 027	. 024	. 020	. 018	. 015	. 013
4.8	. 029	. 029	. 028	. 027	. 025	. 023	. 021	. 018	. 016	. 014	. 012
5.2	. 025	. 025	. 025	. 024	. 022	. 021	. 019	. 017	. 015	. 013	. 012
5.6	. 022	. 022	. 022	. 021	. 020	. 018	. 017	. 016	. 014	. 012	. 011
6.0	. 020	. 020	. 020	. 020	. 020	. 017	. 016	. 015	. 013	. 011	. 011
6.4	. 018	. 018	. 018	. 018	. 018	. 016	. 015	. 014	. 012	. 011	. 010
6.8	. 016	. 016	. 016	. 016	. 016	. 014	. 014	. 013	. 012	. 010	. 010
7.2	. 015	. 015	. 015	. 015	. 015	. 013	. 013	. 012	. 011	. 010	. 009
7.6	. 014	. 014	. 013	. 013	. 013	. 012	. 012	. 011	. 010	. 009	. 009
8.0	. 013	. 013	. 012	. 012	. 012	. 011	. 011	. 010	. 010	. 009	. 008

Table 51

PRESSURE COEFFICIENTS FOR A SINGLE LOAD APPLIED ON SUBGRADE OR FLEXIBLE PAVEMENT

Table 52
VALUES OF RADIUS OF STIFFNESS R
IN
INCHES FOR RIGID PAVEMENT SLAB

Slab	Values of k n (in.)										50	100	150	200	250	300	350	400	500
6	34.84	29.30	26.47	24.63	23.30	22.26	21.42	20.72	19.59										
6.5	36.99	31.11	28.11	26.16	24.74	23.64	22.74	22.00	20.80										
7	39.11	32.89	29.72	27.65	26.15	24.99	24.04	23.25	21.99										
7.5	41.19	34.63	31.29	29.12	27.54	26.32	25.32	24.49	23.16										
8	43.23	36.35	32.85	30.57	28.91	27.62	26.58	25.70	24.31										
8.5	45.24	38.04	34.37	31.99	30.25	28.91	27.81	26.90	25.44										
9	47.22	39.71	35.88	33.39	31.58	30.17	29.03	28.08	26.55										
9.5	49.17	41.35	37.36	34.77	32.89	31.42	30.23	29.24	27.65										
10	51.10	42.97	38.83	36.14	34.17	32.65	31.42	30.39	28.74										
10.5	53.01	44.57	40.28	37.48	35.45	33.87	32.59	31.52	29.81										
11	54.89	46.16	41.71	38.81	36.71	35.07	33.75	32.64	30.87										
11.5	56.75	47.72	43.12	40.13	37.95	36.26	34.89	33.74	31.91										
12	58.59	49.27	44.52	41.43	39.18	37.44	36.02	34.84	32.95										
12.5	60.41	50.80	45.90	42.72	40.40	38.60	37.14	35.92	33.97										
13	62.22	52.32	47.27	43.99	41.61	39.75	38.25	36.99	34.99										
13.5	64.00	53.82	48.63	45.26	42.80	40.89	39.35	38.06	35.99										
14	65.77	55.31	49.98	46.51	43.98	42.02	40.44	39.11	36.99										
14.5	67.53	56.78	51.31	47.75	45.16	43.15	41.51	40.15	37.97										
15	69.27	58.25	52.63	48.98	46.32	44.26	42.58	41.19	38.95										
15.5	70.99	59.70	53.94	50.20	47.47	45.36	43.64	42.21	39.92										
16	72.70	61.13	55.24	51.41	48.62	46.45	44.70	43.23	40.88										
16.5	74.40	62.56	56.53	52.61	49.75	47.54	45.74	44.24	41.84										
17	76.08	63.98	57.81	53.80	50.88	48.61	46.77	45.24	42.78										
17.5	77.75	65.38	59.08	54.98	52.00	49.68	47.80	46.23	43.72										
18	79.41	66.78	60.35	56.16	53.11	50.74	48.82	47.22	44.66										
19	82.70	69.54	62.84	58.48	55.31	52.84	50.84	49.17	46.51										
20	85.95	72.27	65.30	60.77	57.47	54.92	52.84	51.10	48.33										
21	89.15	74.97	67.74	63.04	59.62	56.96	54.81	53.01	50.13										
22	92.31	77.63	70.14	65.28	61.73	58.98	56.75	54.89	51.91										
23	95.44	80.26	72.52	67.49	63.83	60.98	58.68	56.75	53.67										
24	98.54	82.86	74.87	69.68	65.90	62.96	60.58	58.59	55.41										

$R_{S}=\sqrt[4]{\frac{E h^{3}}{12\left(1-u^{2}\right) k}} \quad$ where $\quad \begin{aligned} & E=4,000,000 \mathrm{psi} \\ & u=0.15\end{aligned} \quad$ therefore $\quad R_{s}=24.1652 \sqrt[4]{\frac{h^{3}}{k}}$

Table 53
Aircraft Loads On Circular Pipe Under Rigid Pavement
Height of Fill Measured From Top of Pipe To Surface of Subgrade

으	
の	
∞	
N	

'0,000 Pound Dual-Tandem Gear Assembly. 190 pounds per square inch tire pressure. 26-inch c/c spacing between dual tires. 66-inch ; spacing between for and aft tandem tires. k-300 pounds per cubic inch. $R_{S}-37.44$ inches. $h-12$ inches. $E-4,000,000$ pounds per uare inch. u-0.15. Interpolate for intermediate fill heiaths.
Aircraft Loads Horizonal Elliptical Pipe Under Rigid Pavement Pounds Per Linear Foot
Height of Fill Measured From Top of Pipe To Surface of Subgrade

Height of Fill H Above Top of Grade										
	1	2	3	4	5	6	7	8	9	10
14x23	3354	3136	2875	2576	2247	2006	1771	1560	1375	1216
19x30	4276	3996	3664	3285	2867	2559	2258	2989	1759	1554
22x34	4789	4474	4104	3679	3213	2866	2528	2229	1973	1742
24x38	5297	4949	4538	4072	3557	3172	2798	2467	2187	1931
27x42	5745	5365	4922	4417	3660	3440	3032	2677	2376	2097
29x45	6244	5829	5349	4803	4199	3739	3295	2911	2587	2284
32x49	6737	6288	5772	5185	4533	4036	3557	3144	2797	2469
34×53	7223	6741	6188	5561	4864	4329	3816	3375	3005	2654
38×60	8070	7530	6914	6217	5441	4842	4269	3781	3370	2978
43×68	8993	8392	7707	6933	6071	5403	4769	4229	3773	3336
48x76	9879	9221	8471	7623	6680	5947	5256	4667	4167	3687
53×83	10630	9925	9121	8212	7202	6415	5677	5045	4507	3992
58×91	11430	10680	9819	8847	7765	6925	6136	5458	4879	4324
63×98	12100	11310	10410	9385	8246	7362	6531	5813	5199	4620
68×106	12810	11980	11040	9963	8765	7836	6962	6200	5547	4940
72x113	13400	12540	11560	10450	9205	8240	7330	6532	5846	5213
77×121	14010	13120	12110	10690	9676	8674	7727	6892	6170	5507
82×128	14480	13570	12540	11360	10040	9021	8045	7181	6430	5741
87×136	14970	14040	12990	11790	10450	9396	8389	7495	6715	5997
92×143	15390	14450	13380	12160	10810	9730	8696	7875	6971	6229
97x151	15810	14860	13780	12550	11180	10080	9019	8072	7245	6481
106×166	16490	15520	14440	13210	11830	10690	9574	8586	7729	6931
116x180	17000	16030	14960	13740	12350	11180	10040	10925	8145	7323

0,000 Pound Dual-Tandem Gear Assembly. 190 pounds per square inch tire pressure. 26 -inch c/c spacing between dual tires. 66-inch spacing between for and aft tandem tires. k-300 pounds per cubic inch. $R_{S}-37.44$ inches. h - 12 inches. $E-4,000,000$ pounds per uare inch. $u-0.15$. Interpolate for intermediate fill heiaths.
Aircraft Loads On Arch Pipe Under Rigid Pavement
Height of Fill Measured From Top of Pipe To Surface of Subgrade

Height of Fill H Above Top of Grade										
	1	2	3	4	5	6	7	8	9	10
11x18	2656	2483	2277	2039	1778	1588	1403	1234	1087	962
$13-1 / 2 \times 22$	3180	2973	2727	2442	2130	1908	1679	1478	1303	1153
$15-1 / 2 \times 26$	3701	3460	3173	2843	2481	2214	1955	1722	1519	1343
$18 \times 28-1 / 2$	4047	3782	3469	3109	2712	2421	2137	1882	1663	1470
$22-1 / 2 \times 36-1 / 4$	5043	4698	4322	3876	3385	3019	2662	2348	2104	1836
$26-5 / 8 \times 43-3 / 4$	5954	5559	5136	4610	4030	3590	3164	2794	2482	2191
$31-5 / 16 \times 51-1 / 8$	6914	6452	5923	5321	4653	4142	3650	3228	2872	2536
$36 \times 58-1 / 2$	7808	7286	6689	6014	5262	4683	4122	3654	3257	2878
40x65	8587	8013	7358	6617	5794	5155	4548	4031	3595	3178
45x73	9490	8857	8135	7320	6412	5707	5040	4474	3993	3532
54x88	11080	10350	9513	8569	7518	6701	5934	5276	4715	4180
62×102	12420	11620	10690	9645	8479	7575	6724	5987	5355	4764
72x115	13470	12610	11620	10510	9258	8289	7374	6573	5882	5246
$77-1 / 4 \times 122$	14010	13120	12110	10960	9676	8674	7727	6892	6170	5507
$87-1 / 8 \times 138$	15080	14150	13090	11880	10540	9481	8468	7567	6780	6056
96-7/8×154	15940	14990	13910	12680	11300	10190	9122	8167	7334	6562
. $106-1 / 2 \times 168-3 / 4$	16440	15480	14390	13170	11780	10640	9535	8551	7695	6899

30,000 Pound Dual-Tandem Gear Assembly. 190 pounds per square inch tire pressure. 26-inch c/c spacing between dual tires. 66-inch © spacing between for and aft tandem tires. $k-300$ pounds per cubic inch. $R_{S}-37.44$ inches. $h-12$ inches. $E-4,000,000$ pounds per 'uare inch. $u-0.15$. Interpolate for intermediate fill heiaths.

Table 56

RAILROAD LOADS ON CIRCULAR PIPE

	PIPE SIZE－INSIDE DIAMETER D IN INCHES 	
앙		
$\stackrel{\sim}{N}$	 	
융		
∞		
\bigcirc		
$\stackrel{+}{\sim}$	N	
$\underset{\sim}{山}$		ε
$\begin{aligned} & \text { 山 } 0 \\ & \frac{\square}{\alpha} \end{aligned}$		$\stackrel{0}{y}$
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$$
$\begin{aligned} & \text { I } \\ & \underset{\sim}{\beth} \end{aligned}$		
$\begin{aligned} & \frac{1}{0} \\ & \frac{1}{T} \\ & \mathbf{T} \end{aligned}$		$\begin{aligned} & \frac{2}{a} \\ & \ddot{y} \\ & \frac{0}{\ddot{0}} \end{aligned}$
${\underset{\sim}{\mathbf{I}}}^{\underline{\omega}}$		
＋		$\begin{aligned} & \pm \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$
m		
\rightarrow		
	 SヨHONI NI Q Yヨ	

Table 57

Table 58
RAILROAD LOADS ON ARCH PIPE

Table 59

BEDDING FACTORS FOR VERTICAL ELLIPTICAL PIPE POSITIVE PROJECTING EMBANKMENT INSTALLATIONS

$\frac{H}{B_{c}}$	CLASS B BEDDING							ASS C ZING			$\frac{H}{B_{c}}$
$p=0.9$											
	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	
0.5	-	-	-	-	-	-	-	-	-	-	0.5
1.0	-	3.66	3.66	3.66	3.66	-	2.70	2.70	2.70	2.70	1.0
1.5	-	3.66	3.66	3.66	3.66	2.70	2.70	2.70	2.70	2.70	1.5
2.0	3.66	3.66	3.66	3.66	3.66	2.70	2.70	2.70	2.70	2.70	2.0
3.0	3.66	3.66	3.66	3.54	3.26	2.70	2.70	2.70	2.64	2.48	3.0
5.0	3.66	3.66	3.61	3.37	3.13	2.70	2.70	2.68	2.54	2.40	5.0
10.0	3.66	3.66	3.46	3.27	3.03	2.70	2.70	2.59	2.48	2.34	10.0
15.0	3.66	3.66	3.52	3.21	3.00	2.70	2.70	2.57	2.45	2.32	15.0
$\mathrm{p}=0.7$											
	$\mathrm{r}_{\text {st }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {st }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	
0.5	-	-	-	-	-	2.53	2.53	2.53	2.53	2.53	0.5
1.0	3.35	3.35	3.35	3.35	3.35	2.53	2.53	2.53	2.53	2.53	1.0
1.5	3.35	3.35	3.25	3.16	3.16	2.53	2.53	2.47	2.42	2.42	1.5
2.0	3.35	3.27	3.01	2.91	2.91	2.53	2.48	2.33	2.27	2.27	2.0
3.0	3.35	3.13	2.94	2.80	2.68	2.53	2.40	2.29	2.20	2.13	3.0
5.0	3.35	3.05	2.85	2.74	2.63	2.53	2.36	2.23	2.17	2.10	5.0
10.0	3.35	2.97	2.80	2.71	2.59	2.53	2.31	2.22	2.14	2.07	10.0
15.0	3.35	2.95	2.78	2.68	2.58	2.53	2.30	2.21	2.13	2.06	15.0
$p=0.5$											
	$\mathrm{r}_{\mathrm{s} d \mathrm{p}}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\mathrm{st}} \mathrm{p}=0$	0.1	0.3	0.5	1.0	
0.5	2.80	2.80	2.80	2.80	2.80	2.20	2.20	2.20	2.20	2.20	0.5
1.0	2.77	2.48	2.48	2.48	2.48	2.18	2.00	2.00	2.00	2.00	1.0
1.5	2.67	2.46	2.43	2.40	2.40	2.12	1.98	1.97	1.95	1.95	1.5
2.0	2.63	2.44	2.37	2.34	2.34	2.10	1.97	1.93	1.91	1.91	2.0
3.0	2.59	2.41	2.36	2.31	2.27	2.07	1.96	1.92	1.89	1.86	3.0
5.0	2.55	2.40	2.33	2.30	2.26	2.04	1.95	1.90	1.88	1.85	5.0
10.0	2.53	2.38	2.32	2.29	2.25	2.03	1.94	1.90	1.87	1.84	10.0
15.0	2.52	2.38	2.31	2.28	2.24	2.02	1.93	1.90	1.87	1.84	15.0
$\mathrm{p}=0.3$											
	$\mathrm{r}_{\text {sdp }}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\mathrm{sd} \mathrm{d}} \mathrm{P}=0$	0.1	0.3	0.5	1.0	
0.5	2.18	2.17	2.16	2.16	2.16	1.80	1.79	1.79	1.79	1.79	0.5
1.0	2.15	2.10	2.10	2.10	2.10	1.78	1.74	1.74	1.74	1.74	1.0
1.5	2.14	2.10	2.09	2.08	2.08	1.77	1.74	1.74	1.73	1.73	1.5
2.0	2.13	2.10	2.08	2.07	2.07	1.77	1.74	1.73	1.73	1.73	2.0
3.0	2.13	2.09	2.08	2.07	2.06	1.76	1.74	1.73	1.72	1.72	3.0
5.0	2.12	2.09	2.08	2.07	2.06	1.76	1.74	1.73	1.72	1.71	5.0
10.0	2.12	2.09	2.08	2.06	2.05	1.76	1.74	1.73	1.72	1.71	10.0
15.0	2.12	2.09	2.07	2.06	2.05	1.76	1.74	1.73	1.72	1.71	15.0
ZERO PROJECTING											
	1.98					1.66					

Table 60
BEDDING FACTORS FOR HORIZONTAL ELLIPTICAL PIPE POSITIVE PROJECTING EMBANKMENT INSTALLATIONS

$\frac{H}{B_{c}}$	CLASS B BEDDING					CLASS C BEDDING					$\frac{\mathrm{H}}{\mathrm{B}_{\mathrm{c}}}$
$\mathrm{P}=0.9$											
	$\mathrm{r}_{\text {sod }}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sdp }}=0$	0.1	0.3	0.5	1.0	
0.5	2.72	2.65	2.65	2.65	2.65	2.14	2.10	2.10	2.10	2.10	0.5
1.0	2.58	2.49	2.49	2.49	2.49	2.05	2.00	2.00	2.00	2.00	1.0
1.5	2.34	2.46	2.42	2.40	2.38	2.03	1.97	1.95	1.94	1.92	1.5
2.0	2.52	2.44	2.41	2.39	2.37	2.01	1.96	1.95	1.93	1.92	2.0
3.0	2.50	2.43	2.40	2.38	2.34	2.00	1.96	1.94	1.92	1.90	3.0
5.0	2.48	2.42	2.39	2.36	2.33	1.99	1.95	1.93	1.91	1.89	5.0
10.0	2.47	2.41	2.37	2.35	2.33	1.98	1.94	1.92	1.91	1.89	10.0
15.0	2.46	2.40	2.36	2.35	2.32	1.98	1.94	1.92	1.91	1.89	15.0
$\mathrm{p}=0.7$											
	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sup }}=0$	0.1	0.3	0.5	1.0	
0.5	2.46	2.42	2.42	2.42	2.42	1.98	1.95	1.95	1.95	1.95	0.5
1.0	2.40	2.35	2.35	2.35	2.35	1.94	1.90	1.90	1.90	1.90	1.0
1.5	2.38	2.33	2.31	2.30	2.28	1.92	1.89	1.88	1.87	1.86	1.5
2.0	2.37	2.32	2.31	2.29	2.28	1.92	1.89	1.88	1.87	1.86	2.0
3.0	2.36	2.32	2.30	2.29	2.27	1.91	1.88	1.87	1.86	1.85	3.0
5.0	2.35	2.32	2.29	2.28	2.26	1.90	1.88	1.87	1.86	1.84	5.0
10.0	2.34	2.31	2.28	2.27	2.26	1.90	1.88	1.86	1.85	1.84	10.0
15.0	2.34	2.31	2.28	2.27	2.25	1.90	1.88	1.86	1.85	1.84	15.0
$\mathrm{p}=0.5$											
	$\mathrm{r}_{\text {stP }}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {st }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	
0.5	2.27	2.25	2.25	2.25	2.25	1.85	1.84	1.84	1.84	1.84	0.5
1.0	2.25	2.23	2.23	2.23	2.23	1.84	1.82	1.82	1.82	1.82	1.0
1.5	2.24	2.22	2.21	2.21	2.20	1.83	1.82	1.81	1.81	1.80	1.5
2.0	2.24	2.22	2.21	2.20	2.20	183	1.82	1.81	1.81	1.80	2.0
3.0	2.24	2.22	2.21	2.20	2.19	1.83	1.82	1.81	1.81	1.80	3.0
5.0	2.23	2.22	2.21	2.20	2.19	1.83	1.82	1.81	1.80	1.80	5.0
10.0	2.23	2.22	2.20	2.20	2.19	1.83	1.82	1.81	1.80	1.80	10.0
15.0	2.23	2.21	2.20	2.20	2.19	1.82	1.81	1.81	1.80	1.80	15.0
$\mathrm{p}=0.3$											
	$\mathrm{r}_{\text {sdp }}=0$	0.1	0.3	-0.5	1.0	$\mathrm{r}_{\text {stp }}=0$	0.1	0.3	0.5	1.0	
0.5	2.16	2.16	2.16	2.16	2.16	1.78	1.78	1.78	1.78	1.78	0.5
1.0	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	1.0
1.5	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	1.5
2.0	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	2.0
3.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	3.0
5.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	5.0
10.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	10.0
15.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	15.0
ZERO PROJECTING											
	2.12					1.75					

Table 61
BEDDING FACTORS FOR ARCH PIPE
POSITIVE PROJECTING EMBANKMENT INSTALLATIONS

$\frac{H}{B_{c}}$	CLASS B BEDDING					CLASS C BEDDING					$\frac{\mathrm{H}}{\mathrm{B}_{\mathrm{c}}}$
$\mathrm{P}=0.9$											
	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {st }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	
0.5	2.72	2.65	2.65	2.65	2.65	2.14	2.10	2.10	2.10	2.10	0.5
1.0	2.58	2.49	2.49	2.49	2.49	2.05	2.00	2.00	2.00	2.00	1.0
1.5	2.34	2.46	2.42	2.40	2.38	2.03	1.97	1.95	1.94	1.92	1.5
2.0	2.52	2.44	2.41	2.39	2.37	2.01	1.96	1.95	1.93	1.92	2.0
3.0	2.50	2.43	2.40	2.38	2.34	2.00	1.96	1.94	1.92	1.90	3.0
5.0	2.48	2.42	2.39	2.36	2.33	1.99	1.95	1.93	1.91	1.89	5.0
10.0	2.47	2.41	2.37	2.35	2.33	1.98	1.94	1.92	1.91	1.89	10.0
15.0	2.46	2.40	2.36	2.35	2.32	1.98	1.94	1.92	1.91	1.89	15.0
$\mathrm{p}=0.7$											
	$\mathrm{r}_{\text {sdP }}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {st }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	
0.5	2.46	2.42	2.42	2.42	2.42	1.98	1.95	1.95	1.95	1.95	0.5
1.0	2.40	2.35	2.35	2.35	2.35	1.94	1.90	1.90	1.90	1.90	1.0
1.5	2.38	2.33	2.31	2.30	2.28	1.92	1.89	1.88	1.87	1.86	1.5
2.0	2.37	2.32	2.31	2.29	2.28	1.92	1.89	1.88	1.87	1.86	2.0
3.0	2.36	2.32	2.30	2.29	2.27	1.91	1.88	1.87	1.86	1.85	3.0
5.0	2.35	2.32	2.29	2.28	2.26	1.90	1.88	1.87	1.86	1.84	5.0
10.0	2.34	2.31	2.28	2.27	2.26	1.90	1.88	1.86	1.85	1.84	10.0
15.0	2.34	2.31	2.28	2.27	2.25	1.90	1.88	1.86	1.85	1.84	15.0
$\mathrm{P}=0.5$											
	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	
0.5	2.27	2.25	2.25	2.25	2.25	1.85	1.84	1.84	1.84	1.84	0.5
1.0	2.25	2.23	2.23	2.23	2.23	1.84	1.82	1.82	1.82	1.82	1.0
1.5	2.24	2.22	2.21	2.21	2.20	1.83	1.82	1.81	1.81	1.80	1.5
2.0	2.24	2.22	2.21	2.20	2.20	1.83	1.82	1.81	1.81	1.80	2.0
3.0	2.24	2.22	2.21	2.20	2.19	1.83	1.82	1.81	1.81	1.80	3.0
5.0	2.23	2.22	2.21	2.20	2.19	1.83	1.82	1.81	1.80	1.80	5.0
10.0	2.23	2.22	2.20	'2.20	2.19	1.83	1.82	1.81	1.80	1.80	10.0
15.0	2.23	2.21	2.20	2.20	2.19	1.82	1.81	1.81	1.80	1.80	15.0
$\mathrm{p}=0.3$											
	$\mathrm{r}_{\mathrm{sd}} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }}=0$	0.1	0.3	0.5	1.0	
0.5	2.16	2.16	2.16	2.16	2.16	1.78	1.78	1.78	1.78	1.78	0.5
1.0	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	1.0
1.5	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	1.5
2.0	2.16	2.15	2.15	2.15	2.15	1.78	1.77	1.77	1.77	1.77	2.0
3.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	3.0
5.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	5.0
10.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	10.0
15.0	2.16	2.15	2.15	2.15	2.14	1.78	1.77	1.77	1.77	1.77	15.0
ZERO PROJECTING											
	2.12					1.75					

Table 62

Table 63

$\begin{array}{r} \text { C } \\ \hline 0 \\ \hline 0 \end{array}$		－	$\begin{aligned} & 8 \\ & 0 \\ & 10 \end{aligned}$	$\stackrel{N}{\sim}$	$\stackrel{i}{\sim}$	$\begin{array}{\|l} \hline 0 \\ \stackrel{0}{7} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\mathrm{~J}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{in} \\ & \stackrel{y}{j} \end{aligned}$	$\begin{array}{\|l} \hline 8 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{n} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~L} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{10}{10} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \mathrm{L} \\ & \stackrel{n}{5} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	－
$\begin{aligned} & \mathscr{0}: \stackrel{0}{0} \\ & \frac{0}{0} \frac{0}{0} 0 \end{aligned}$		ค	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & 7 \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{7} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\frac{10}{\underset{\sim}{f}}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\stackrel{N}{\mathrm{~N}}}{\underset{\mathrm{~J}}{2}}$	$\begin{aligned} & 8 \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 10 \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\text { O}}{\stackrel{0}{0}}$
		N	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{m} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\mu}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \text { م } \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{m} \end{aligned}$	$\stackrel{8}{\dot{\gamma}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{\top} \end{gathered}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\stackrel{i n}{\stackrel{i}{\tau}}$	$\stackrel{N}{N}$	$\stackrel{N}{\underset{\sim}{V}}$	$\stackrel{N}{N}$	$\stackrel{8}{\circ}$
		N	$\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 윽 } \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & { } } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{y}{\mathrm{~m}} \end{aligned}$	악	안	$\begin{aligned} & \stackrel{1}{\sim} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{*} \end{aligned}$	$\stackrel{\circ}{\circ}$
		$\stackrel{\sim}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\text { N }}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \hline \mathbf{O} \\ & \end{aligned}$	$\begin{aligned} & \hline \mathbf{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{m} \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { Nㅡㅇ } \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~N} \\ & \mathrm{M} \end{aligned}$	$\underset{\sim}{\stackrel{1}{n}}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{\omega}{N} \\ & \stackrel{m}{2} \end{aligned}$	안
		ค	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{aligned} & N \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{2} \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{gathered} \text { N } \\ \underset{N}{N} \end{gathered}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	$\begin{aligned} & \stackrel{n}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\bigcirc}{\text { L }}$
		N	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\frac{\mathrm{N}}{\stackrel{N}{\mathrm{~N}}}$	$\stackrel{10}{\stackrel{N}{F}}$	$\frac{\stackrel{i}{N}}{\underset{\Gamma}{F}}$	$\frac{\stackrel{1}{N}}{\underset{\sim}{~}}$	$\frac{\stackrel{i}{N}}{\underset{\Gamma}{F}}$	O-	온	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$	$\begin{gathered} \underset{N}{N} \\ \end{gathered}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{gathered} \text { O} \\ \stackrel{N}{N} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	－
		N	$\begin{aligned} & \text { 을 } \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\stackrel{\sim}{N}}{\underset{\sim}{\mid}}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{7}}$	$\stackrel{\circ}{\stackrel{\circ}{7}}$	$\frac{0}{\stackrel{\circ}{2}}$	$\frac{N}{N}$	$\stackrel{\text { n }}{\underset{\sim}{F}}$	$\stackrel{N}{\stackrel{N}{\Gamma}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \end{aligned}$	$\begin{gathered} N \\ \underset{N}{N} \end{gathered}$	$\begin{aligned} & \underset{N}{N} \\ & \end{aligned}$	$\stackrel{\text { 으N }}{\text { N }}$
		ก	은	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{10}{\stackrel{N}{0}}$	$\begin{array}{\|l} \stackrel{1}{N} \\ \stackrel{0}{0} \end{array}$	$\begin{aligned} & \stackrel{\text { n }}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \stackrel{1}{N} \\ \stackrel{0}{0} \end{array}$	윽	은	은	$\stackrel{N}{\stackrel{N}{\mathrm{~N}}}$	$\begin{aligned} & \stackrel{1}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\frac{0}{\stackrel{0}{7}}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{7}}$	$\stackrel{\text { n }}{\underset{\Gamma}{5}}$	$\stackrel{\text { N }}{\underset{\sim}{r}}$	$\stackrel{\text { n }}{\stackrel{N}{F}}$	$\stackrel{10}{\Gamma}$
		$\bar{\sim}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { No } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{1}{\circ} \end{aligned}$		은	은	옥	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{1}{\sim}}{\stackrel{\sim}{\top}}$
		슨	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ \hline 1 \end{array}$	$\begin{aligned} & \stackrel{1}{\infty} \\ & \stackrel{N}{5} \end{aligned}$	$\stackrel{\llcorner }{\stackrel{\circ}{\circ}}$	$\stackrel{\text { n }}{\stackrel{0}{6}}$	$\stackrel{\text { n }}{\stackrel{1}{6}}$	은	응	응	$\begin{gathered} \text { Non } \\ \text { On } \end{gathered}$	$\begin{aligned} & \text { No } \\ & \text { On } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \text { 능 } \\ & \stackrel{0}{\circ} \end{aligned}$	$\stackrel{10}{\stackrel{1}{\circ}}$		$\stackrel{10}{\text { N }}$
		の	$\begin{aligned} & 0 \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & \hline 0 \end{aligned}$	$\begin{gathered} \text { N } \\ \vdots \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	O	0	io	융	$\begin{aligned} & \text { n } \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{2} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \frac{1}{N} \\ & \hline \end{aligned}$	응	응	응	$\begin{aligned} & \text { N } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Non } \end{aligned}$	$\stackrel{\text { N }}{\text { N}}$
		$\stackrel{\infty}{\sim}$	$\|8\|$	৪	8	8	৪	৪	৪	৪	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$$	$\begin{array}{\|c} \text { N } \\ \text { N } \end{array}$	O	융	잉	$\frac{\stackrel{1}{n}}{\stackrel{0}{6}}$	$\frac{10}{\stackrel{1}{6}}$	$\frac{1}{\stackrel{1}{6}}$	号
		今	$\left\|\begin{array}{l\|l\|} \hline 0 \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \infty \end{aligned}$	\|o	$\begin{aligned} & \text { O} \\ & \text { م } \\ & \infty \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{0}{\infty}$	$\underset{\infty}{\stackrel{1}{\infty}}$	$\underset{\infty}{\infty} \underset{\infty}{\infty}$	$\begin{aligned} & \mathrm{L} \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\infty}{\mathrm{N}}}{\stackrel{\infty}{2}}$	O	৪	$\begin{gathered} \stackrel{1}{6} \\ \end{gathered}$	N	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	ผ
		\bigcirc	$\begin{aligned} & \hline 8 \\ & \hline 0 \end{aligned}$	O	O	8	O	8	O	৪	$\begin{aligned} & \text { N } \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\infty}{2} \end{aligned}$	$\begin{gathered} 1 \\ \underset{\infty}{1} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{\infty}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \end{aligned}$	$\underset{\infty}{\stackrel{N}{\infty}}$	$\stackrel{N}{\stackrel{1}{\infty}}$	$\underset{\infty}{\stackrel{N}{\infty}}$	$\stackrel{\sim}{\infty}$
			$\stackrel{\sim}{\sim}$	$\stackrel{1}{5}$	$\stackrel{\infty}{\sim}$	ㅊ	$\stackrel{ \pm}{\sim}$	N	¢	ल	¢	フ	$\stackrel{\infty}{\square}$	L	8	\bigcirc	N	$\stackrel{\infty}{\sim}$	\pm	8	¢

Table 64

		\bigcirc	$$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\frac{\stackrel{\leftrightarrow}{N}}{\stackrel{1}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { N } \end{gathered}$	$\begin{array}{\|c} \underset{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	N	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{N} \end{array}$	$\frac{N}{N}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{array}{\|c} \mathbf{N} \\ \underset{N}{N} \end{array}$	$\begin{array}{\|c} \mathbf{O} \\ \text { N } \\ \text { N } \end{array}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{array}{\|c} \hline N \\ \end{array}$
		\％	$\stackrel{\stackrel{L}{N}}{\stackrel{N}{N}}$	$\frac{0}{\mathrm{O}}$	$\frac{0}{\frac{10}{N}}$	$\frac{0}{2}$	$\frac{0}{\frac{10}{N}}$	$\frac{0}{\mathrm{O}}$	$\frac{\stackrel{N}{N}}{\stackrel{1}{N}}$	$\frac{\stackrel{n}{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\stackrel{N}{\underset{N}{N}}$	$\begin{aligned} & \text { O} \\ & \text { N-N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$
		\％	$\stackrel{\stackrel{N}{N}}{\stackrel{N}{N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{8}{N}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\stackrel{N}{N}}{\underset{N}{N}}$	$\begin{array}{\|c} \stackrel{N}{\mathrm{~N}} \\ \stackrel{1}{2} \end{array}$	$\frac{0}{\frac{0}{N}}$	$\frac{0}{2}$	$\frac{\stackrel{N}{N}}{N}$	$\frac{\stackrel{N}{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{gathered} N \\ \underset{N}{N} \end{gathered}$	$\begin{gathered} \underset{N}{N} \\ \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$$	$\stackrel{N}{N}$
		フ	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\mathrm{~N}}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { On } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O} \\ & \text { N } \end{aligned}$	$\begin{array}{\|l} \hline \text { O } \\ \text { N } \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{0}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{8}{\mathrm{O}}$	$\begin{array}{\|c} \stackrel{N}{\mathrm{~N}} \\ \stackrel{y}{\mathrm{~N}} \end{array}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{0}{2}$	$\frac{0}{\frac{10}{N}}$	$\frac{N}{N}$	$\frac{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$
		$\bar{\square}$	N No	O-	O-O	O	O-	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\underset{\sim}{N}$	$\left.\begin{array}{\|c} \mathbf{N} \\ \mathrm{N} \\ \mathrm{~N} \end{array} \right\rvert\,$	O	$\begin{aligned} & \text { O } \\ & \text { O} \\ & \text { N } \end{aligned}$	$\stackrel{\stackrel{N}{N}}{\stackrel{\rightharpoonup}{N}}$		$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\stackrel{1}{N}}{N}$	$\frac{0}{2}$	$\frac{0}{2}$	$\frac{\mathrm{N}}{\mathrm{~N}}$
		9	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \mathrm{O} \\ & \text { 응 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { LO} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { م } \\ & \stackrel{1}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \stackrel{\mathrm{O}}{\mathrm{O}} \end{aligned}$	O-	O-	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{-}{\mathrm{N}}}$	$\stackrel{N}{N}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$
		¢	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	응	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	응	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 응 } \end{aligned}$	$\begin{array}{\|l} \stackrel{\text { n }}{N} \\ \mathrm{O} \end{array}$	$\begin{array}{\|l} \stackrel{1}{N} \\ \stackrel{0}{0} \end{array}$	O-	O-	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c} \text { N } \\ \text { N } \end{array}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { NO } \\ & \text { N } \end{aligned}$
		¢	$\stackrel{10}{\stackrel{\infty}{\infty}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathbf{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{8} \\ & \hline \end{aligned}$	안	$\begin{aligned} & \mathrm{O} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrow}{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N- } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 合 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 合 } \end{aligned}$	$\begin{array}{\|l} \stackrel{\text { n }}{\mathrm{O}} \\ \hline 0 \end{array}$	$\begin{array}{\|l} \stackrel{\text { N }}{2} \\ \stackrel{\rightharpoonup}{0} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	－
		へ	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \propto \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \underset{\sim}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & \stackrel{1}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\infty}{\infty} \\ & \end{aligned}$	앙	응	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\mathrm{O}} \\ & \hline \end{aligned}$
		¢	$\stackrel{i}{\stackrel{\circ}{\wedge}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\frac{\circ}{\mathrm{O}}$	$\frac{\circ}{\mathrm{O}}$	$\frac{0}{N}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\underset{\mathrm{~N}}{2}}$	$\stackrel{\text { N }}{\stackrel{N}{\wedge}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\sim}{\infty}$	$\underset{\sim}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \end{aligned}$	$\begin{array}{\|l} \stackrel{N}{\infty} \\ \underset{\sim}{\infty} \end{array}$	$\begin{array}{\|l\|l} \stackrel{\infty}{\infty} \\ \stackrel{\infty}{2} \end{array}$	앙	O	응
		¢	$\stackrel{1}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \end{aligned}$	$\frac{0}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { n }}{\stackrel{N}{\wedge}}$	$\stackrel{\mathrm{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$
		¢	$\begin{aligned} & 8 \\ & \stackrel{\circ}{ } \end{aligned}$	$\begin{array}{\|l} \stackrel{1}{N} \\ \stackrel{6}{2} \end{array}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ \stackrel{0}{\hat{0}} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{N} \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \hline 1 \end{aligned}$	$\frac{8}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{1}{N}$	$\stackrel{N}{N}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{1}{\wedge}}{\stackrel{N}{\wedge}}$	$\stackrel{\text { n }}{\stackrel{N}{\mathrm{~N}}}$	$\stackrel{i}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	－
		ल	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 6 \end{aligned}$	$\left.\begin{array}{\|c} 10 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{6}{2} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{1}{N} \\ \stackrel{0}{2} \end{array}$	$\begin{array}{\|l\|l} \stackrel{n}{1} \\ \vdots \\ \hline 6 \end{array}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$
		N	$\begin{aligned} & 8 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\text { n }}{\substack{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{n}{\mathrm{~N}}}{\stackrel{n}{2}}$	$\begin{array}{\|l\|l} \stackrel{10}{1} \\ \stackrel{0}{2} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{2} \\ \stackrel{0}{2} \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	$$	$\begin{aligned} & \text { O} \\ & \text { 응 } \\ & \hline 1 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 10 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\llcorner }{6} \\ & \widehat{6} \end{aligned}\right.$		$\begin{array}{\|l} \stackrel{\llcorner }{6} \\ \widehat{6} \end{array}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	
		ल	$\begin{aligned} & \circ \\ & \stackrel{n}{n} \end{aligned}$	$$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 10 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 10 \end{aligned}$	$$	$\left\|\begin{array}{c} N \\ N \\ \stackrel{N}{2} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~N} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\text { n }}{n} \\ & \stackrel{n}{2} \end{aligned}\right.$	$\begin{array}{\|l} \stackrel{\text { n }}{\text { n }} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline 1 \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	응
			$\stackrel{\sim}{\sim}$	$\stackrel{0}{\sim}$	$\stackrel{\infty}{\sim}$	$\bar{\sim}$	$\stackrel{ \pm}{\sim}$	N	¢	$\stackrel{\sim}{e}$	¢	Y	$\stackrel{\infty}{+}$	\pm	8	\bigcirc	N	\propto	\pm	8	8

Table 65

品		8	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{\sim}{N} \end{array}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \text { № } \\ & \underset{\sim}{2} \end{aligned}$	O-O	O-	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{array}{\|l} \stackrel{N}{N} \\ \text { Op } \end{array}$	$\begin{aligned} & \text { 으 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & n \\ & N \\ & \hline \end{aligned}$	$\frac{8}{9}$	$\frac{\mathrm{O}}{\mathbf{m}}$	$\stackrel{N}{\mathrm{~N}}$	$\frac{\stackrel{n}{\mathrm{~N}}}{\mathbf{N}}$	$\frac{1}{\square}$
$\begin{aligned} & \infty \\ & \infty \\ & \frac{0}{0} \\ & \frac{0}{0} \frac{0}{0} 0 \end{aligned}$		\％	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{gathered} \stackrel{L}{\infty} \\ \underset{N}{\infty} \end{gathered}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{\infty} \end{aligned}$	$\stackrel{N}{\stackrel{N}{\infty}}$	$\begin{gathered} \text { م } \\ \underset{\sim}{\infty} \\ N \end{gathered}$	$\stackrel{n}{N}$	O-	$\begin{aligned} & \text { N} \\ & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{N}{N} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{2} \\ & \mathrm{~N} \end{aligned}$	O-	$\begin{aligned} & \text { N్N } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { LOM } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { L్ర } \end{aligned}$	$\begin{aligned} & \stackrel{L}{N} \\ & \stackrel{e}{2} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{N}{0} \\ & \hline \end{aligned}$	응
$\begin{aligned} & \bar{\omega} \\ & \bar{\omega} \\ & \bar{\omega} \\ & \bar{\omega} \frac{0}{0} \end{aligned}$		$\stackrel{\infty}{\circ}$	$\begin{gathered} \infty \\ \stackrel{n}{\infty} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{N}{\infty} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{\infty} \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\perp}{\substack{n \\ \infty \\ \sim}}$	O-	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{0}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} \\ & \hline \text { N } \end{aligned}$	O-O	$\begin{aligned} & \text { N్N } \\ & \text { O} \end{aligned}$	N N్ల	－
		is	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{N} \end{gathered}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\begin{gathered} \circ \\ \stackrel{0}{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \text { N } \\ \underset{\sim}{\infty} \end{gathered}$	$\stackrel{\substack{\mathrm{N} \\ \underset{\sim}{\infty} \\ \sim}}{ }$	$$	$\begin{gathered} \stackrel{1}{N} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \stackrel{10}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \stackrel{1}{N} \end{array}$	$\stackrel{10}{\stackrel{1}{N}}$
		\％	$\stackrel{n}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\circ}{\mathrm{O}}$	$\frac{\stackrel{O}{N}}{N}$	$\stackrel{N}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$	O-	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\underset{N}{N}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \\ & \stackrel{1}{N} \end{aligned}$	$\stackrel{\llcorner }{\sim}$	O-	O-	O	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	N
		용	$\stackrel{N}{N}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{i}{\stackrel{1}{\hat{N}}}$	$\begin{array}{\|c} \stackrel{N}{\hat{0}} \\ \stackrel{e}{N} \end{array}$	$\begin{aligned} & \text { م } \\ & \stackrel{0}{2} \\ & N \end{aligned}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\stackrel{N}{N}$	$\frac{0}{\mathrm{~N}}$	$\frac{0}{\mathrm{O}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\mathrm{O}}{\mathbf{\infty}}$	$\stackrel{1}{\sim}$	$\begin{gathered} \circ \\ \stackrel{0}{0} \\ \mathrm{~N} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \stackrel{0}{\infty} \\ \text { N } \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\substack{\text { n } \\ \underset{\sim}{\infty} \\ N}}{ }$	$\stackrel{\sim}{N}$
		¢	$\begin{gathered} \stackrel{n}{N} \\ \hat{N} \end{gathered}$	$\begin{aligned} & 0 \\ & \text { O } \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\begin{gathered} 0 \\ \hline 0 \\ \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { 10 } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{0}{\mathrm{O}} \stackrel{1}{\mathrm{~N}}$	$\stackrel{10}{\stackrel{1}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{N}$	N
		ก	$\begin{aligned} & \mathbf{n} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \text { N } \end{aligned}$	$\stackrel{\llcorner }{\stackrel{N}{N}}$	$\stackrel{\stackrel{\sim}{2}}{\stackrel{\sim}{N}}$	$\stackrel{\stackrel{N}{N}}{\stackrel{N}{\sim}}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} 0 \\ \stackrel{0}{0} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \\ & N \end{aligned}$	$\begin{array}{\|l} \stackrel{N}{N} \\ \underset{\sim}{N} \end{array}$	$\stackrel{\mathrm{O}}{\mathrm{Q}}$	$\stackrel{\stackrel{N}{N}}{\underset{N}{N}}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}$	$\stackrel{\circ}{\stackrel{\circ}{N}}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}$	$\stackrel{n}{N}$	$\stackrel{10}{\stackrel{N}{N}}$
		N	$\stackrel{n}{N}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{N}{\stackrel{n}{2}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{gathered} \stackrel{1}{N} \\ \stackrel{0}{N} \end{gathered}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$
		－	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\stackrel{\llcorner }{N}$	$\stackrel{\stackrel{N}{N}}{\underset{\sim}{\sim}}$	$\stackrel{\sim}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \stackrel{0}{\mathrm{~N}} \end{gathered}$	$\stackrel{1}{N}$	$\stackrel{\stackrel{N}{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\circ}{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathrm{O}} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { LO} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{10}{\stackrel{1}{6}}$
		\％	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} 0 \\ \stackrel{i}{n} \\ \text { N } \end{gathered}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{\sim} \end{gathered}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { O} \\ & \text { in } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{gathered} \stackrel{N}{\sim} \\ \underset{\sim}{d} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{N} \end{aligned}$	N	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{1}{2} \\ & \end{aligned}$	$\stackrel{10}{\stackrel{1}{2}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { N } \\ \mathbf{O} \\ \mathrm{N} \end{gathered}$	N
		9	$\begin{gathered} \stackrel{\sim}{N} \\ \underset{\sim}{4} \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { 군 } \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{n} \end{gathered}$	$\begin{array}{\|c} \stackrel{n}{N} \\ \underset{N}{N} \end{array}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{\sim}$	$\left\lvert\, \begin{gathered} \stackrel{\sim}{N} \\ \underset{\sim}{*} \end{gathered}\right.$	$\stackrel{\text { O}}{\stackrel{0}{\sim}}$	$\begin{gathered} \mathrm{O} \\ \stackrel{0}{\mathrm{~N}} \end{gathered}$	$\stackrel{\llcorner }{\stackrel{n}{\sim}}$	$\stackrel{\stackrel{n}{N}}{\stackrel{y}{\sim}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{n}{N} \\ & \end{aligned}$	$\begin{aligned} & \text { 으N } \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{10}{\stackrel{1}{N}}$	$\stackrel{10}{\stackrel{1}{\sim}}$
		¢	$\begin{aligned} & \stackrel{\llcorner }{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{array}{\|c} \stackrel{n}{N} \\ \underset{N}{N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{gathered} \stackrel{\sim}{N} \\ \underset{\sim}{*} \end{gathered}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{\sim} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{4} \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$
		F	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\stackrel{N}{N} \underset{N}{N}$	$\stackrel{N}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{n} \end{array}$	$\stackrel{\mathrm{O}}{\stackrel{\rightharpoonup}{\sim}}$	$\begin{gathered} \stackrel{1}{\cup} \\ \underset{\sim}{\sim} \end{gathered}$	$\stackrel{\stackrel{1}{\sim}}{\underset{\sim}{\sim}}$	$\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{~N}}}$	$\stackrel{\stackrel{0}{0}}{\stackrel{1}{\sim}}$	$\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{~N}}}$	$\stackrel{\text { N }}{\substack{\text { N }}}$
		\bigcirc	$\stackrel{n}{N} \underset{N}{N}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$$	$\underset{\sim}{N}$	ON	$\begin{gathered} \mathrm{O} \\ \stackrel{N}{N} \end{gathered}$	$\stackrel{N}{N}$	$\stackrel{N}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \text { N } \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\text { n }}{\stackrel{\sim}{N}}$	$\stackrel{\stackrel{N}{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{+}{⿺} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { N } \end{gathered}$	$\stackrel{\text { N }}{\text { N }}$
			$\stackrel{\sim}{\sim}$	$\stackrel{1}{2}$	$\stackrel{\infty}{\sim}$	ָ	$\stackrel{+}{\sim}$	N	¢	ल	¢	フ	$\stackrel{\infty}{+}$	¢	8	\bigcirc	N	$\stackrel{\sim}{\sim}$	\pm	8	¢

Table 66

$\begin{aligned} & \text { 高 } \\ & \hline 0.0 \end{aligned}$		$\stackrel{\sim}{\square}$	은		$\stackrel{\text { Non }}{\stackrel{N}{\mathrm{O}}}$	$\stackrel{\text { Nㅡㅇ }}{\stackrel{\circ}{\circ}}$	은	은	$\frac{8}{9}$	$\frac{8}{1}$	$\stackrel{N}{\mathrm{~N}} \underset{\mathrm{~N}}{2}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{\mathrm{~N}}{2}}$	$\begin{array}{\|c} \stackrel{N}{\mathrm{~N}} \\ \stackrel{2}{2} \end{array}$	$\begin{aligned} & \stackrel{\llcorner }{\mathrm{N}} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\mathrm{~N}}$	$\frac{0}{\frac{10}{7}}$	$\frac{10}{5}$	$\frac{0}{\frac{10}{7}}$	$\frac{8}{\frac{10}{7}}$	$\frac{0}{10}$	$\stackrel{\text { N }}{\stackrel{1}{+}}$
		\pm	$\begin{aligned} & \text { No } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 우 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 우 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	$\begin{aligned} & \text { 응 } \\ & \text { 우 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \hline \text { 2 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\circ} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \stackrel{\text { n }}{N} \\ \hline \mathbf{O} \end{array}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\text { N }}{\stackrel{N}{\mathrm{O}}}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\mathrm{O}} \end{aligned}$	은	은
$\begin{aligned} & \bar{\omega} \overline{\bar{\omega}} \overline{\bar{\omega}} \\ & \frac{\tilde{\omega}}{0} \frac{\tilde{0}}{0} \frac{\tilde{0}}{0} \end{aligned}$		$\stackrel{\square}{\square}$	$\left\|\begin{array}{l} 0 \\ \operatorname{lon} \\ 0 \end{array}\right\|$	O	ol	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~h} \\ & \hline \end{aligned}$	ol	$\begin{array}{\|l\|l\|l\|} \hline \stackrel{N}{\mathrm{~N}} \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{10}{6} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ \hline \end{array}$	$\begin{aligned} & \text { に } \\ & \stackrel{0}{6} \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \stackrel{\text { N }}{ } \\ \hline \end{array}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{6} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	O	O	$$	$\begin{aligned} & 10 \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 10 \\ \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & \mathrm{~N} \\ & \hline 1 \end{aligned}$	ำ
		N	৪	$\begin{array}{\|l\|l\|} \hline \stackrel{1}{\infty} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \infty \\ \underset{\infty}{\prime} \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { N } \\ \hline \infty \end{array}$	৪	8	8	合	৪	N	N	$$	N	0	O	O	O	O	앵
		F	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \infty \\ \infty \end{array}$	$\underset{\infty}{\circ}$	O	$\begin{aligned} & \mathrm{O} \\ & ⿻ 上 丨 \\ & \infty \end{aligned}$	$\underset{\infty}{\circ}$	$\begin{array}{\|l\|l} \circ \\ \infty \\ \infty \end{array}$	O	$\begin{aligned} & \stackrel{1}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\stackrel{1}{\infty}}{\substack{\infty}}$	$\stackrel{\stackrel{1}{\infty}}{\stackrel{\infty}{\infty}}$	$\stackrel{\stackrel{1}{\infty}}{\substack{\infty}}$	$\underset{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\sim}{\infty}$
		으	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \stackrel{\mathrm{~N}}{ } \\ \hline \end{array}$	$\stackrel{\circ}{\mathrm{N}}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \stackrel{\mathrm{~N}}{ } \\ \hline \end{array}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\text { n }}{\stackrel{N}{2}}$	$\stackrel{\varrho}{\stackrel{n}{\lambda}}$	$\stackrel{\stackrel{\sim}{\wedge}}{\stackrel{N}{\wedge}}$	$\stackrel{\varrho}{\stackrel{n}{\lambda}}$	$\stackrel{\llcorner }{\stackrel{\circ}{\lambda}}$	$\stackrel{\curvearrowleft}{\stackrel{n}{N}}$	$\stackrel{\varrho}{\stackrel{N}{\wedge}}$	O	O	O	O	O	$\begin{aligned} & \mathrm{N} \\ & \mathrm{\infty} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \infty \\ & \hline \end{aligned}$	N
		の	O	-	○	O	○	-	○	O	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{N}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\frac{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { 읏 }}{ }$
		∞	$\begin{aligned} & \text { O} \\ & \text { గ్ } \end{aligned}$	$$	N	$$	次		次	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	응		응	$\begin{array}{\|l\|l} \hline 0 \\ \stackrel{0}{0} \end{array}$		$\begin{array}{\|l\|l} \stackrel{1}{\circ} \\ \stackrel{1}{2} \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{\bullet} \\ \hline \end{array}$	$\stackrel{\stackrel{N}{\circ}}{\stackrel{0}{6}}$	$\stackrel{\stackrel{1}{\mathrm{~N}}}{\stackrel{6}{6}}$	$\stackrel{1}{\bullet}$	$\stackrel{\sim}{\bullet}$
		－	$\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \stackrel{5}{5} \end{aligned}\right.$	$\begin{array}{\|l\|l} \stackrel{1}{1} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{\mathrm{n}} \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{1} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \stackrel{1}{\mathrm{n}} \end{array}$	$\stackrel{1}{\stackrel{1}{5}}$	$\begin{array}{\|l\|l} \stackrel{1}{\mathrm{n}} \end{array}$	$\begin{array}{\|l\|l\|} \stackrel{1}{5} \\ \hline \end{array}$	8	8	8	8	8	8	8	$$	N	$\stackrel{1}{6}$	¢
		\bullet	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$1 \text { N }$	N	$\begin{aligned} & \text { N } \\ & \end{aligned}$	N	1	N	$\begin{array}{\|l} \text { N } \\ \end{array}$	N	$\begin{array}{\|l} \text { N } \\ \end{array}$	응	응	$\begin{aligned} & 0 \\ & 10 \\ & \hline 0 \end{aligned}$	10	응	10	$\begin{aligned} & 0 \\ & 10 \\ & \hline 0 \end{aligned}$	응	은
		n	8	$\stackrel{\leftrightarrow}{\stackrel{N}{f}}$	$\stackrel{\leftrightarrow}{N}$	$\stackrel{\stackrel{1}{N}}{\underset{子}{f}}$	$\stackrel{\leftrightarrow}{\stackrel{n}{f}}$	$\stackrel{\leftrightarrow}{\stackrel{N}{\triangleleft}}$	$\stackrel{\leftrightarrow}{N}$	$\stackrel{\stackrel{1}{N}}{\underset{子}{f}}$	$\stackrel{\leftrightarrow}{\underset{f}{f}}$	$\stackrel{\leftrightarrow}{\stackrel{N}{f}}$	$\stackrel{\leftrightarrow}{N}$	$\begin{array}{\|l} \hline 8 \\ \hline 0 \end{array}$	O	O	O	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	O	8	앙
		\pm	$\stackrel{10}{\underset{\sigma}{\circ}}$	윽	oio	1	oio	은	oif	$1 \text { on }$	io	on	10	10	on	10	10	10	on	$\stackrel{0}{\circ}$	¢
		の	$\stackrel{10}{\stackrel{n}{\sigma}}$	$\stackrel{\leftrightarrow}{\stackrel{N}{\triangleleft}}$	io	0	io	은	io	$\stackrel{\sim}{\mathcal{N}}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\mathcal{G}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	ㅇ	악	암	앙	안	악
		N	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ 0 \end{array}$	N	8	$\begin{aligned} & \text { م } \\ & \stackrel{n}{n} \end{aligned}$	\|n	응	\|	$\begin{array}{\|l\|} \hline 0 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	O	$\stackrel{\stackrel{1}{\infty}}{\underset{子}{8}}$	io	lo	io	$\stackrel{0}{6}$	$\stackrel{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
		－	$\begin{aligned} & \mathrm{O} \\ & \stackrel{10}{7} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 응 } \end{aligned}$	응	oㅇ	O	O	$\begin{aligned} & \mathrm{O} \\ & \hline \infty \end{aligned}$	$\stackrel{N}{N}$	$\begin{array}{\|l} \stackrel{1}{\hat{6}} \end{array}$	$$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{1}{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{5}{2} \end{aligned}$	\|n	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\leftrightarrow}{2}$	$\stackrel{0}{7}$	$\stackrel{\sim}{\sim}$
			\bigcirc	10	$\stackrel{\infty}{\sim}$	ㄷ	$\stackrel{\text { N }}{\sim}$	N	¢	$\stackrel{\sim}{m}$	$\stackrel{O}{0}$	フ	$\stackrel{\infty}{+}$	L	8	\bigcirc	N	$\stackrel{\sim}{\sim}$	\pm	8	¢

Table 67

Fill Height Tables are based on: 1. A soil weight of $120 \mathrm{lbs} / \mathrm{tt}^{3}$ 2. AASHTO HS2O live load 3. Embankment installation												Class I Class II Class III		$\begin{aligned} & \text { Class IV } \\ & \text { Class V } \\ & \text { Special Design } \end{aligned}$	
Fill Height (feet)															
Pipe i.d. (inches)	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
12	1150	1225	1275	1350	1425	1500	1550	1625	1700	1750	1825	1900	1975	2050	2125
15	1150	1200	1275	1325	1400	1475	1550	1625	1675	1750	1825	1875	1950	2025	2100
18	1150	1200	1275	1350	1400	1475	1550	1600	1675	1750	1825	1875	1950	2025	2100
21	1150	1200	1275	1350	1400	1475	1550	1625	1675	1750	1825	1900	1975	2025	2100
24	1150	1225	1300	1350	1425	1500	1550	1625	1700	1775	1850	1900	1975	2050	2125
27	1150	1225	1300	1350	1425	1500	1575	1625	1700	1775	1850	1925	1975	2050	2125
30	1150	1225	1300	1350	1425	1500	1575	1650	1700	1775	1850	1925	2000	2050	2125
33	1150	1225	1300	1375	1425	1500	1575	1650	1725	1800	1850	1925	2000	2075	2150
36	1175	1250	1300	1375	1450	1525	1600	1650	1725	1800	1875	1950	2000	2075	2150
42	1175	1250	1325	1375	1450	1525	1600	1675	1725	1800	1875	1950	2025	2075	2150
48	1175	1250	1325	1400	1450	1525	1600	1675	1725	1800	1875	1950	2025	2100	2150
54	1175	1250	1325	1400	1450	1525	1600	1675	1750	1825	1875	1950	2025	2100	2175
60	1200	1250	1325	1400	1475	1550	1600	1675	1750	1825	1900	1975	2050	2100	2175
66	1200	1275	1350	1400	1475	1550	1625	1700	1775	1825	1900	1975	2050	2125	2200
72	1200	1275	1350	1425	1500	1550	1625	1700	1775	1850	1925	2000	2050	2125	2200
78	1200	1275	1350	1425	1500	1575	1625	1700	1775	1850	1925	2000	2050	2125	2200
84	1225	1275	1350	1425	1500	1575	1625	1700	1775	1850	1925	2000	2075	2125	2200
90	1225	1275	1350	1425	1500	1575	1650	1700	1775	1850	1925	2000	2075	2125	2200
96	1225	1300	1350	1425	1500	1575	1650	1700	1775	1850	1925	2000	2075	2150	2200

Table 68

		4	$\frac{10}{9}$	$\frac{N}{N}$	$\frac{N}{\mathrm{~N}}$	$\frac{0}{\frac{10}{m}}$	$\frac{\stackrel{\varrho}{\mathrm{N}}}{\mathbf{m}}$	$\frac{n}{N}$	$\frac{\stackrel{n}{N}}{\mathbf{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$
		\％	$\frac{8}{c}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { LO} \\ & \hline \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \end{aligned}$	$\frac{\mathrm{O}}{\mathrm{~m}}$	$\frac{\mathrm{O}}{\mathrm{~m}}$	$\frac{N}{N}$	$\frac{\stackrel{N}{\mathrm{~N}}}{\mathbf{N}}$	$\frac{0}{9}$	$\frac{0}{2}$	$\frac{0}{9}$	$\frac{\stackrel{n}{N}}{\mathbf{N}}$	$\frac{\stackrel{n}{N}}{\mathbf{N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { N- } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	O-N	$\begin{aligned} & \mathrm{O} \\ & \mathbf{N} \end{aligned}$
$\begin{aligned} & \bar{\omega} \overline{\bar{\omega}} \overline{\bar{\omega}} \\ & \overline{0} \\ & \overline{0} \frac{\pi}{0} \frac{\pi}{0} \end{aligned}$		\％	$\begin{aligned} & \text { N } \\ & \text { N్ల } \end{aligned}$	৪	O-	O-৪	$\begin{aligned} & \text { N } \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \text { 只 } \\ & \mathbf{O} \end{aligned}$	$\frac{\mathrm{O}}{\mathrm{~m}}$	$\frac{8}{9}$	$\frac{\stackrel{N}{\mathrm{~N}}}{\mathrm{~N}}$	$\frac{\stackrel{N}{N}}{\mathbf{N}}$	$\frac{\stackrel{N}{N}}{N}$	$\frac{\stackrel{N}{N}}{\mathbf{N}}$	$\frac{N}{N}$	$\frac{\stackrel{N}{N}}{\mathbf{N}}$
		\％	O	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{N} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\llcorner }{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{N} \end{aligned}$	O-	O-	O-	$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	N్N	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{n}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & \text { م } \\ & \stackrel{N}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \hline \mathbf{e} \end{aligned}$	$\begin{array}{\|l} \text { 号 } \\ \mathbf{O} \end{array}$
		$\bar{\square}$	$\stackrel{\perp}{\circ}$	$\begin{aligned} & \text { O} \\ & \stackrel{\infty}{\infty} \\ & N \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{\infty} \\ N \end{gathered}$	$\stackrel{\perp}{\stackrel{N}{N}} \stackrel{+}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{N} \\ & \end{aligned}$	$\begin{array}{\|c} \stackrel{\llcorner }{N} \\ \underset{\sim}{n} \end{array}$	$\begin{gathered} \stackrel{\llcorner }{N} \\ \underset{\sim}{2} \end{gathered}$	O-০	O-ઠ	O-৪	O-O	O-৪
		O	ి이	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{N}{\infty} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \text { O} \\ & \underset{N}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\infty}{\infty} \\ & N \end{aligned}$	$\stackrel{\substack{\mathrm{N} \\ \underset{\sim}{\infty} \\ \hline}}{ }$	O-	O-	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$
		¢	$\stackrel{\circ}{\mathrm{H}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\circ}{\stackrel{\circ}{N}}$	$\frac{0}{\stackrel{O}{N}}$	$\stackrel{\circ}{\stackrel{\circ}{N}}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} 0 \\ \stackrel{0}{\infty} \\ \sim \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{N}{\infty} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$
		¢	$\stackrel{i}{\stackrel{1}{\stackrel{0}{e}}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\circ} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c} \stackrel{n}{N} \\ \hat{6} \end{array}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{\prime} \end{aligned}$	$\stackrel{\circ}{\mathrm{O}}$	$\underset{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{n}{N}$	$\stackrel{\circ}{\stackrel{\circ}{N}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\llcorner }{\stackrel{N}{N}}$	$\stackrel{N}{N}$	$\stackrel{10}{\stackrel{N}{N}}$	$\stackrel{N}{\underset{N}{N}}$
		ल	$$	$\stackrel{N}{\stackrel{N}{N}}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{N}{N}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O} \\ & \mathrm{N} \end{aligned}$		$\begin{array}{\|l} \stackrel{N}{\hat{0}} \\ \mathbf{N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\lambda}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\stackrel{\mathrm{~N}}{\mathrm{~N}}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$
		¢	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{10}{\stackrel{1}{N}}$	$\stackrel{N}{\stackrel{n}{N}}$	$\stackrel{\stackrel{N}{2}}{\stackrel{n}{\sim}}$	$\stackrel{\llcorner }{\stackrel{N}{\mathrm{~N}}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \mathbf{N} \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \mathbf{Q} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \text { N } \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \text { N } \end{aligned}$
		¢	$\stackrel{\circ}{\stackrel{0}{4}}$	$\stackrel{\circ}{\stackrel{0}{\sim}}$	$\stackrel{\circ}{\stackrel{0}{\sim}}$	$\stackrel{\circ}{\stackrel{0}{\sim}}$	$\stackrel{\stackrel{N}{\sim}}{\underset{\sim}{\sim}}$	$\underset{\sim}{\stackrel{N}{\sim}}$	$\stackrel{\stackrel{N}{\sim}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \stackrel{N}{N} \end{array}$	$\begin{aligned} & \text { O } \\ & \stackrel{N}{N} \end{aligned}$	$\stackrel{\llcorner }{\stackrel{n}{2}}$	$\stackrel{\llcorner }{\stackrel{1}{2}}$	$\stackrel{1}{N}$	$\stackrel{10}{\stackrel{1}{N}}$	$\stackrel{\llcorner }{\stackrel{1}{2}}$
		¢	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{1}{~}}$	$\begin{gathered} \stackrel{N}{N} \\ \end{gathered}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \stackrel{\sim}{N} \\ \underset{\sim}{N} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{10}{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{\stackrel{N}{\sim}}{\stackrel{y}{\sim}}$	$\stackrel{\stackrel{N}{N}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{N} \end{aligned}$	－
		ल	$\begin{gathered} \stackrel{1}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్, } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్, } \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{N}{N} \end{gathered}$	$\begin{aligned} & \text { N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{N} \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{1}{N} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{N} \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{1}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$\stackrel{\stackrel{i}{\sim}}{\underset{\sim}{\sim}}$	$\begin{gathered} \stackrel{N}{N} \\ \underset{\sim}{N} \end{gathered}$	$\underset{\substack{\stackrel{N}{\sim} \\ \underset{\sim}{2}}}{ }$	$\stackrel{\stackrel{1}{\sim}}{\underset{\sim}{*}}$	$\underset{\substack{\stackrel{N}{N} \\ \underset{\sim}{2}}}{ }$
		N	$\stackrel{\circ}{\mathrm{N}}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{n} \end{gathered}$	$\underset{\sim}{N}$	ON	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\stackrel{N}{\stackrel{N}{N}}$	$\stackrel{N}{\stackrel{N}{N}}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N్ల } \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \hline \end{aligned}$	－¢
		ल	$\frac{\llcorner }{\stackrel{N}{N}}$	$\frac{0}{i}$	$\frac{0}{2}$	$\frac{\stackrel{N}{N}}{\stackrel{N}{N}}$	응	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	O-	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \end{gathered}$	$$	$\begin{gathered} \mathrm{O} \\ \mathrm{~N} \end{gathered}$	으N	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{n} \end{aligned}$	$\frac{N}{N}$	$\stackrel{\llcorner }{N}$	$\stackrel{N}{\stackrel{N}{N}}$
			$\stackrel{ }{\sim}$	$\stackrel{1}{\sim}$	$\underset{\sim}{\infty}$	$\bar{\sim}$	N	N	¢	ल	¢	$\underset{\sim}{\text { Y }}$	$\stackrel{\infty}{+}$	$\stackrel{4}{6}$	8	\bigcirc	N	$\stackrel{\infty}{\sim}$	\pm	8	\％

Table 69

		$\stackrel{\infty}{\sim}$	$\begin{aligned} & 0 \\ & 10 \\ & 0 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 8 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 6 \\ & \hline \end{aligned}$	$$	$\stackrel{\stackrel{N}{0}}{0}$	$\begin{aligned} & \text { 유 } \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 10 } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 0 \\ & \hline 0 \end{aligned}$		$\stackrel{\mathrm{O}}{\mathrm{C}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{1}{N}$	$\stackrel{N}{N}$	$\stackrel{1}{N}$	$\stackrel{N}{N}$	$\stackrel{1}{N}$
		N	$\begin{aligned} & 0 \\ & 10 \\ & \stackrel{0}{2} \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$$	$\begin{aligned} & N \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{6} 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\text { n }}{2} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{array}{\|l} \stackrel{1}{\mathrm{~N}} \\ \stackrel{n}{2} \end{array}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 1 \\ & \\ & \end{aligned}$	$$	$$	$\begin{aligned} & \text { n } \\ & \text { On } \end{aligned}$	$\stackrel{0}{0}$
		\bigcirc	$\begin{aligned} & \stackrel{N}{\boldsymbol{N}} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{gathered} \stackrel{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{+} \\ & \hline \end{aligned}$	$\stackrel{0}{\circ}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{t} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{n}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$
$\begin{aligned} & \bar{\omega} \bar{\omega} \bar{\equiv} \\ & \bar{\omega} \\ & \frac{\pi}{0} \frac{\pi}{0} \frac{\pi}{0} \end{aligned}$		6	$\begin{array}{\|l\|} \hline 1 \\ \underset{N}{2} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \stackrel{L}{N} \\ & \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { to } \end{aligned}$	合	$$	$\begin{array}{\|c} \stackrel{1}{N} \\ \underset{\sim}{*} \end{array}$	$$	$\begin{aligned} & 0 \\ & \hline 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{N}{\underset{\sim}{\mathrm{~N}}}$	$$	$\stackrel{\sim}{N}$
		\pm	$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{M} \end{array}$	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \\ & \end{aligned}$	$\begin{aligned} & \hline \stackrel{1}{n} \\ & \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{1}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{n}{N} \\ & \stackrel{m}{2} \end{aligned}$	$\stackrel{10}{\sim}$
		๓	$\begin{array}{\|l} \mathrm{O} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|c} \underset{N}{N} \end{array}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{p} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	－					
		N	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	은	은	은	은	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{7} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \frac{10}{2} \\ & \hline \end{aligned}$	$\frac{10}{N}$	$\stackrel{\text { N }}{\stackrel{N}{7}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	－			
		F	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { 응 } \end{aligned}$	승	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 으 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 은 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\begin{array}{\|c} \text { N } \\ \stackrel{0}{0} \\ \hline \end{array}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{0} \end{aligned}$	은	은	은	은	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\stackrel{\sim}{\sim}$
		응	$\left\|\begin{array}{l} 0 \\ 00 \\ 0 \end{array}\right\|$	io	O	융	융	oㅇ	응	융	$\stackrel{\text { n }}{\circ}$	$\begin{aligned} & \text { 啲 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{6} \end{aligned}$	응	ㅇ	ㅇ	$\begin{aligned} & 10 \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { O} \end{aligned}$	Nㅡㅇ	Nㅡㅇ	N
		の	$\left\|\begin{array}{l} 10 \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{\stackrel{N}{\infty}}{\substack{\infty}}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	O	$\underset{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\perp}{\stackrel{\infty}{\infty}}$	$\stackrel{\perp}{\stackrel{\infty}{\infty}}$	$\stackrel{\perp}{\infty}$	৪	৪	务	$\begin{aligned} & \text { N } \\ & \text { N/ } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{aligned} & 10 \\ & \end{aligned}$	N	융	융	응
		∞	$\begin{aligned} & 8 \\ & 8 \\ & \infty \end{aligned}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\llcorner }{N}$	$\stackrel{10}{\wedge}$	$\stackrel{\llcorner }{\stackrel{N}{\wedge}}$	O	$\begin{aligned} & 8 \\ & \infty \\ & \hline \end{aligned}$	○	$\begin{aligned} & 8 \\ & \infty \\ & \hline \end{aligned}$	O	$\begin{aligned} & \mathrm{N} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { م } \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { م } \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \text { O} \\ \infty \\ \infty \end{gathered}\right.$	¢
		N	$\stackrel{1}{\mathrm{~N}}$	○	읏	8	8	O	$\stackrel{\sim}{N}$	$\stackrel{\sim}{N}$	$\stackrel{1}{\mathrm{~N}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	응	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{\varrho}{N}$	$\stackrel{\curvearrowleft}{N}$	$\stackrel{N}{N}$
		\bullet	$\begin{aligned} & 0 \\ & 10 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ٌ } \\ & 0 \end{aligned}$	응	枵	응	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \end{aligned}$	O	응	$\begin{array}{\|l} \stackrel{1}{0} \\ \hline \end{array}$	$\stackrel{1}{\stackrel{1}{6}}$	$\stackrel{10}{\stackrel{1}{6}}$	$\stackrel{1}{\stackrel{1}{6}}$	$\stackrel{N}{\stackrel{N}{6}}$	-	읏	음
		\llcorner	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\stackrel{\text { n }}{\stackrel{1}{2}}$			$\stackrel{n}{\stackrel{1}{n}}$	\|	$\stackrel{n}{\stackrel{1}{n}}$	$\underset{\text { in }}{\stackrel{1}{2}}$	$\stackrel{i}{\mathrm{~N}}$	8	8	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	8	8	8	8	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$$	ก
		－	$\left.\begin{gathered} 0 \\ 10 \\ 10 \end{gathered} \right\rvert\,$	OR	N	$$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	N్N	$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	N N N	N	$\begin{aligned} & \text { N } \\ & \end{aligned}$	응	응	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 10 \end{aligned}$	$\begin{array}{\|c} \circ \\ \hline 1 \\ \hline 0 \end{array}$	앙
O 0		の	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \end{aligned}$	1	N	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	8	응	응	8	8	응	8	앙	B	$\frac{10}{\underset{\sim}{\sim}}$	$\stackrel{\leftrightarrow}{\underset{\sim}{\sim}}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\frac{1}{\underset{\sim}{2}}$	$\stackrel{10}{\sim}$
		\sim	○	$\stackrel{\stackrel{1}{\mathrm{~N}}}{\substack{2}}$	OR	No	8	8	8	$\stackrel{1}{5}$	$\stackrel{1}{1}$	in	$\begin{aligned} & \mathrm{O} \\ & 10 \end{aligned}$	N	B	8	ㅇ	8	8	O	$\stackrel{\sim}{\sim}$
		－	$\stackrel{\stackrel{1}{\mathrm{~N}}}{\stackrel{1}{5}}$	은	응	ㅇ	$\stackrel{\text { N }}{\mathbf{N}}$	$\begin{aligned} & \text { N్ } \\ & \text { N } \end{aligned}$	$\stackrel{N}{\stackrel{1}{\infty}}$	$\stackrel{\perp}{\infty}$	○	읏	$\begin{aligned} & \text { O} \\ & \text { Һ8 } \end{aligned}$	$\begin{aligned} & 1 \\ & \underset{0}{N} \end{aligned}$	$$	8	O	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\leftrightarrow}{\underset{子}{8}}$	운
			$\stackrel{\sim}{\sim}$	$\stackrel{0}{\square}$	$\stackrel{\infty}{\sim}$	ָ	$\stackrel{+}{\sim}$	N	¢－9	ल	¢	Y	$\stackrel{\infty}{+}$	$\stackrel{4}{5}$	8	\odot	N	$\stackrel{\infty}{\sim}$	\pm	8	¢

Table 70

Table 71

$\stackrel{\circ}{\varnothing}$		\bigcirc	$\frac{8}{\mathrm{O}}$	$\begin{aligned} & \text { O} \\ & \text { NO } \\ & \text { N } \end{aligned}$	$\begin{gathered} \stackrel{N}{N} \\ \mathbf{N} \end{gathered}$	O-	$\begin{aligned} & \stackrel{\text { n }}{N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \stackrel{0}{1} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\stackrel{\text { N }}{\text { N}}$
		\pm	$\begin{aligned} & \text { O } \\ & \text { ! } \\ & \hline- \end{aligned}$	8	8	$\begin{aligned} & \stackrel{N}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\infty} \\ & \underset{T}{ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \stackrel{1}{\sim} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{0}{0}$
$\begin{aligned} & \bar{\omega} \overline{\bar{\omega}} \overline{\bar{\omega}} \\ & \frac{\pi}{0} \frac{\pi}{0} \frac{\pi}{0} \end{aligned}$		$\stackrel{\square}{\square}$	$\begin{aligned} & 1 \\ & \\ & \end{aligned}$	$\stackrel{\stackrel{N}{\wedge}}{\underset{N}{N}}$	$\frac{\text { 응 }}{\stackrel{1}{\wedge}}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{1}{\mathrm{~N}}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{8}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	$\stackrel{8}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & { } } \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & { } } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & { } } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{10}{N}$	$\stackrel{1}{N}$	$\stackrel{\sim}{N}$
			$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$$	$\begin{aligned} & 8 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{1}{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{10}{10} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { م } \\ & \stackrel{N}{N} \end{aligned}$	$\begin{array}{\|l} \stackrel{1}{2} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	8
		F	$\begin{aligned} & 10 \\ & \stackrel{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\stackrel{i}{\stackrel{N}{\tau}}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{N}{\underset{\sim}{f}}$	$\stackrel{N}{\underset{\sim}{2}}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & 7 \end{aligned}$	$$	$\begin{aligned} & \stackrel{N}{2} \\ & \underset{\sim}{t} \end{aligned}$	$\stackrel{N}{\underset{\sim}{t}}$	$\stackrel{N}{\underset{\sim}{v}}$	$\stackrel{i}{N}$	$\stackrel{N}{\underset{\sim}{v}}$	\％
		으	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	안	$\begin{aligned} & \stackrel{\leftrightarrow}{\mathrm{N}} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrow}{\mathrm{N}} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\mathrm{~N}} \\ & \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~L} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \stackrel{y}{m} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{N}{N}}{\substack{\text { ¢ }}}$
		σ	$\begin{aligned} & \stackrel{1}{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & N \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \underset{N}{N} \\ & \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { N }}$
		∞	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{2} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{7}}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\sim}{N}}{\underset{\sim}{\top}}$	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	은	은	은	은	은	은	운	$\begin{aligned} & \stackrel{1}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{N}{\stackrel{1}{\mathrm{~N}}}$	$\stackrel{i^{N}}{\underset{\sim}{N}}$	$\stackrel{N}{\stackrel{1}{\mathrm{~N}}}$	$\stackrel{\circ}{\text { i }}$
		N	$\begin{aligned} & \text { L0 } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	ㅇ	ㅇ	은	O	8	은	응	은	은	은	은	은	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	는
		\bullet	응	O	$\stackrel{\text { N్N }}{\text { N/ }}$	$\begin{aligned} & \text { ๗ొN } \\ & \text { N人 } \end{aligned}$	8	৪	৪	8	8	৪	৪	8	৪	৪	৪	৪	৪	8	N／
		\bigcirc	$\stackrel{10}{\stackrel{10}{\infty}}$	$\stackrel{0}{0}$	$\begin{aligned} & \text { N } \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\infty}{2} \end{aligned}$	O	O	O	8	8	৪	O	O	O	O	O	8	O	O	O
		－	$\begin{aligned} & \mathrm{O} \\ & \hline \infty \end{aligned}$	$\stackrel{\stackrel{N}{N}}{\stackrel{1}{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{N}{N}$	$\stackrel{\text { N }}{\mathrm{N}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	$\stackrel{\perp}{N}$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	ㅇ	○	ㅇ	ㅇ	옷	○	\bigcirc
		∞	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{N}{N}$	○	○	○		$\begin{array}{\|l\|l} \stackrel{1}{N} \\ \hline \end{array}$	$\stackrel{\sim}{\stackrel{1}{\circ}}$	응	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\mathrm{N}}$	8	8	8	8	8
		\sim	o	O	O	O	$\underset{\infty}{\infty}$	O	O	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\mathrm{~N}}$	$\stackrel{\circ}{\mathrm{o}}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\leftrightarrow}{\stackrel{1}{6}}$	$$	8	\|	$\underset{\sim}{\circ}$	$\begin{aligned} & \stackrel{1}{2} \\ & \hline \end{aligned}$	$\stackrel{10}{1}$	$\stackrel{\text { n }}{\stackrel{1}{n}}$	$\stackrel{1}{5}$
		－	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrow}{N} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \end{aligned}$	$\stackrel{N}{\stackrel{N}{N}}$	$\frac{\mathrm{O}}{\mathrm{i}} \mathrm{~F}$	$\begin{aligned} & \text { No } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{\circ}$	৪	$\stackrel{\stackrel{1}{0}}{\stackrel{0}{6}}$	$\stackrel{\stackrel{1}{\mathrm{O}}}{\stackrel{0}{6}}$	呤	응	$\begin{aligned} & \text { N } \\ & \text { Ô } \end{aligned}$	$\stackrel{N}{\circ}$	ie	N
			$\xrightarrow{\text { d }}$	\bigcirc	\bigcirc	ㄷ	$\stackrel{ \pm}{\sim}$	N	¢	ल	¢	Y	＋	15	©	\bigcirc	N	$\stackrel{\sim}{\sim}$	∞	8	8

Table 72

Fill Height Tables are based on:

1. A soil weight of 120 lbs/ft
2. AASHTO HS20 live load
3. Embankment installation

Fill Height (feet)								
Pipe i.d. (inches)	16	17	18	19	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$
12	2225	2350	2500	2625	2775	2700	3025	3175
15	2175	2300	2450	2550	2700	2825	2950	3100
18	2125	2275	2400	2525	2650	2775	2900	3050
21	2125	2250	2375	2500	2625	2750	2875	3000
24	2100	2225	2350	2475	2600	2725	2850	2975
27	2075	2200	2325	2450	2575	2700	2825	2950
30	2075	2200	2325	2450	2575	2700	2825	2950
33	2075	2200	2325	2450	2575	2700	2825	2950
36	2075	2200	2325	2450	2550	2675	2800	2925
42	2050	2175	2300	2425	2550	2675	2800	2925
48	2050	2175	2300	2425	2550	2675	2800	2925
54	2050	2175	2300	2425	2550	2675	2800	2925
60	2050	2175	2300	2425	2550	2650	2775	2900
66	2050	2175	2300	2425	2550	2675	2775	2900
72	2050	2175	2300	2425	2550	2675	2800	2900
78	2075	2175	2300	2425	2550	2675	2800	2900
84	2075	2200	2300	2425	2550	2675	2800	2925
90	2075	2200	2325	2425	2550	2675	2800	2925
96	2075	2200	2325	2450	2550	2675	2800	2925

Figures

Figure 1

Figure 2

> FLOW FOR CIRCULAR PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.010$

Figure 3
FLOW FOR CIRCULAR PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.011$

Figure 4

> FLOW FOR CIRCULAR PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.012$

Figure 5

FLOW FOR CIRCULAR PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.013$

Figure 6
FLOW FOR HORIZONTAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.010$

Figure 7
FLOW FOR HORIZONTAL ELLIPTICAL PIPE FLOWING FULL
BASED ON MANNING'S EQUATION $\mathrm{n}=0.011$

Figure 8
FLOW FOR HORIZONTAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $\mathrm{n}=0.012$

Figure 9
FLOW FOR HORIZONTAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.013$

Figure 10

> FLOW FOR VERTICAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.010$

Figure 11

FLOW FOR VERTICAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $\mathrm{n}=0.011$

Figure 12
FLOW FOR VERTICAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $\mathrm{n}=0.012$

Figure 13

FLOW FOR VERTICAL ELLIPTICAL PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.013$

Figure 14
FLOW FOR ARCH PIPE FLOWING FULL BASED ON MANNING'S EQUATION $n=0.010$

Figure 15
FLOW FOR ARCH PIPE FLOWING FULL
BASED ON MANNING'S EQUATION $\mathrm{n}=0.011$

Figure 16

FLOW FOR ARCH PIPE FLOWING FULL

BASED ON MANNING'S EQUATION n 0.012

Figure 17
FLOW FOR ARCH PIPE FLOWING FULL
BASED ON MANNING'S EQUATION n-0.013

Figure 18.1
FLOW FOR BOX SECTIONS FLOWING FULL
BASED ON MANNINGS EQUATION $\mathrm{n}=0.012$

Figure 18.2
FLOW FOR BOX SECTIONS FLOWING FULL BASED ON MANNINGS EQUATION $\mathrm{n}=0.012$

Figure 19.1
FLOW FOR BOX SECTIONS FLOWING FULL
BASED ON MANNINGS EQUATION $\mathrm{n}=0.013$

Figure 19.2
FLOW FOR BOX SECTIONS FLOWING FULL BASED ON MANNINGS EQUATION $\mathrm{n}=0.013$

Figure 20

RELATIVE VELOCITY AND FLOW IN CIRCULAR PIPE FOR ANY DEPTH OF FLOW

Figure 21
RELATIVE VELOCITY AND FLOW IN HORIZONTAL ELLIPTICAL PIPE FOR ANY DEPTH OF FLOW

Figure 22
RELATIVE VELOCITY AND FLOW IN VERTICAL ELLIPTICAL PIPE FOR ANY DEPTH OF FLOW

Figure 23

Figure 24.1
relative velocity and flow in precast box SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.2

RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.3
relative velocity and flow in precast box SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.4

relative velocity and flow in precast box SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.5
RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.6
RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.7
RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.8
RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 24.9
RELATIVE VELOCITY AND FLOW IN PRECAST BOX SECTIONS FOR ANY DEPTH OF FLOW

Figure 25

MAP OF THE UNITED STATES 2-YEAR, 30-MINUTE RAINFALL INTENSITY

ADAPTES FROM CHART 2, RAINFALL FREQUENEY ATLAS OF THE UNITED STATES, US DEPARTMENT OF COMMERCE, WEATHER BUREAU, TECHNICAL PAPER NO. 40 MaY 1961

Figure 26
INTENSITY-DURATION CURVE

Figure 27

CALIFORNIA CHART "A" FOR CALCULATION OF "DESIGN DISCHARGES"

Figure 28

Figure 29

BUREAU OF PUBLIC ROADS JAN. 1964

Figure 30

CRITICAL DEPTH VERTICAL ELLIPTICAL PIPE

Figure 31.1

CRITICAL DEPTH ARCH PIPE

Figure 31.2

Figure 32
CRITICAL DEPTH—PRECAST CONCRETE BOX SECTIONS

NOTE: d_{c} CANNOT EXCEED RISE

Figure 33

HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL

Figure 34
HEADWATER DEPTH FOR HORIZONTAL ELLIPTICAL CONCRETE PIPE CULVERTS WITH INLET CONTROL

Figure 35

Figure 36
HEADWATER DEPTH FOR CONCRETE ARCH CULVERTS WITH INLET CONTROL

Figure 37

HEADWATER DEPTH FOR CONCRETE BOX CULVERTS WITH INLET CONTROL

EXAMPLE		
$6^{\prime} \times 3^{\prime} B o \times Q=225 \mathrm{cfs}$		
$Q /$ Ppan $=37.5 \mathrm{cfs} / \mathrm{ft}$		
	HW	HW
Inlet	Rise	$f t$
(1)	2.6	7.8

To use scale (2) or (3) project horizontally to scale (1), then use straight inclined line through rise and Q scales, or reverse as illustrated.

Figure 38

HEAD FOR CIRCULAR CONCRETE PIPE CULVERTS FLOWING FULL $\mathrm{n}=\mathbf{0 . 0 1 2}$

Figure 39

HEAD FOR ELLIPTICAL CONCRETE PIPE CULVERTS FLOWING FULL $\mathrm{n}=0.012$

Figure 40

HEAD FOR CONCRETE ARCH CULVERTS FLOWING FULL

Figure 41
HEAD FOR CONCRETE BOX CULVERTS FLOWING FULL

$$
\mathrm{n}=0.012
$$

Figure 42

CULVERT CAPACITY 12-INCH DIAMETER PIPE

Figure 43

CULVERT CAPACITY

15-INCH DIAMETER PIPE

Figure 44
CULVERT CAPACITY
18-INCH DIAMETER PIPE

Figure 45

Figure 46

Figure 47

Figure 48

CULVERT CAPACITY 30-INCH DIAMETER PIPE

Figure 49

CULVERT CAPACITY 33-INCH DIAMETER PIPE

Figure 50

CULVERT CAPACITY
 36-INCH DIAMETER PIPE

Figure 51
CULVERT CAPACITY 42-INCH DIAMETER PIPE

Figure 52

CULVERT CAPACITY
 48-INCH DIAMETER PIPE

Figure 53
CULVERT CAPACITY
54-INCH DIAMETER PIPE

Figure 54
CULVERT CAPACITY 60-INCH DIAMETER PIPE

Figure 55

Figure 56

CULVERT CAPACITY
 72-INCH DIAMETER PIPE

Figure 57
CULVERT CAPACITY
78-INCH DIAMETER PIPE

Figure 58
CULVERT CAPACITY
84-INCH DIAMETER PIPE

Figure 59
CULVERT CAPACITY
90-INCH DIAMETER PIPE

Figure 60
CULVERT CAPACITY 96-INCH DIAMETER PIPE

Figure 61

CULVERT CAPACITY 102-INCH DIAMETER PIPE

Figure 62
CULVERT CAPACITY
108-INCH DIAMETER PIPE

Figure 63

CULVERT CAPACITY 114-INCH DIAMETER PIPE

Figure 64

Figure 65

CULVERT CAPACITY

 132-INCH DIAMETER PIPE

American Concrete Pipe Association • www.concrete-pipe.org

Figure 66
CULVERT CAPACITY
144-INCH DIAMETER PIPE

Figure 67

CULVERT CAPACITY
 14×23-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 18 -INCH CIRCULAR

Figure 68
CULVERT CAPACITY
$19 \times 30-$ INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 24-INCH CIRCULAR

Figure 69
CULVERT CAPACITY
$24 \times 38-$ INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 30-INCH CIRCULAR

American Concrete Pipe Association • www.concrete-pipe.org

Figure 70
CULVERT CAPACITY
$29 \times 45-I N C H$ (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 36-INCH CIRCULAR

Figure 71
CULVERT CAPACITY
$34 \times 54-I N C H$ (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 42-INCH CIRCULAR

Figure 72
CULVERT CAPACITY
$38 \times 60-I N C H$ (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 48-INCH CIRCULAR

Figure 73
CULVERT CAPACITY
$43 \times 68-I N C H$ (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 54-INCH CIRCULAR

Figure 74

CULVERT CAPACITY $48 \times 76-I N C H$ (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 60-INCH CIRCULAR

Figure 75

CULVERT CAPACITY

53×83-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 66-INCH CIRCULAR

Figure 76
CULVERT CAPACITY
58×91-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 72-INCH CIRCULAR

Figure 77
CULVERT CAPACITY
63×98-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 78-INCH CIRCULAR

Figure 78

> CULVERT CAPACITY
> $68 \times$ 106-INCH (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 84-INCH CIRCULAR

Figure 79
CULVERT CAPACITY
$72 \times 113-1 N C H$ (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 90-INCH CIRCULAR

Figure 80
CULVERT CAPACITY
77×121-INCH (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 96-INCH CIRCULAR

Figure 81
CULVERT CAPACITY
82×128-INCH (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 102 -INCH CIRCULAR

Figure 82
CULVERT CAPACITY
$87 \times 136-$ INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 108-INCH CIRCULAR

Figure 83

CULVERT CAPACITY
 92×143-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 114-INCH CIRCULAR

Figure 84

CULVERT CAPACITY
 97×151-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 120-INCH CIRCULAR

Figure 85
CULVERT CAPACITY
106×166-INCH (RISE x SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 132 -INCH CIRCULAR

Figure 86
CULVERT CAPACITY
$116 \times 180-$ INCH (RISE \times SPAN) HORIZONTAL ELLIPTICAL EQUIVALENT 144-INCH CIRCULAR

Figure 87

Figure 88

CULVERT CAPACITY $13 \times 22-$ INCH (RISE x SPAN) ARCH EQUIVALENT 18-INCH CIRCULAR

Figure 89

> CULVERT CAPACITY $15 \times 26-I N C H$ (RISE \times SPAN) ARCH EQUIVALENT 21 -INCH CIRCULAR

Figure 90

CULVERT CAPACITY $18 \times 28-1$ NCH (RISE \times SPAN) ARCH EQUIVALENT 24-INCH CIRCULAR

Figure 91
CULVERT CAPACITY

$22 \times 36-I N C H$ (RISE \times SPAN) ARCH EQUIVALENT 3O-INCH CIRCULAR

Figure 92

CULVERT CAPACITY $27 \times 44-$ INCH (RISE x SPAN) ARCH EQUIVALENT 36-INCH CIRCULAR

Figure 93

CULVERT CAPACITY 31×51-INCH (RISE x SPAN) ARCH EQUIVALENT 42-INCH CIRCULAR

Figure 94

CULVERT CAPACITY
 $36 \times 58-I N C H$ (RISE x SPAN) ARCH EQUIVALENT 48-INCH CIRCULAR

Figure 95

CULVERT CAPACITY $40 \times 65-\mathrm{INCH}$ (RISE x SPAN) ARCH EQUIVALENT 54-INCH CIRCULAR

Figure 96

CULVERT CAPACITY $45 \times 73-I N C H$ (RISE \times SPAN) ARCH EQUIVALENT 60-INCH CIRCULAR

Figure 97

CULVERT CAPACITY 54×88-INCH (RISE x SPAN) ARCH EQUIVALENT 72-INCH CIRCULAR

Figure 98

Figure 99

CULVERT CAPACITY $72 \times 115-1 N C H$ (RISE x SPAN) ARCH EQUIVALENT 90-INCH CIRCULAR

Figure 100

Figure 101

Figure 102

CULVERT CAPACITY $97 \times 154-$ INCH (RISE x SPAN) ARCH EQUIVALENT 120-INCH CIRCULAR

Figure 103

> CULVERT CAPACITY
> $106 \times 169-$ INCH (RISE \times SPAN) ARCH EQUIVALENT 132-INCH CIRCULAR

Figure 104

Figure 105

CULVERT CAPACITY
 $3 \times$ 3-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 39-INCH CIRCULAR

Figure 106

Figure 107

Figure 108

CULVERT CAPACITY 4×4-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 54-INCH CIRCULAR

Figure 109

Figure 110

Figure 111

Figure 112

CULVERT CAPACITY
 6×3-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 57-INCH CIRCULAR

Figure 113

Figure 114

Figure 115

CULVERT CAPACITY
 6×6-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 81-INCH CIRCULAR

Figure 116

Figure 117

CULVERT CADACITY
 7×5-FOOT (SPAN xRISE) BOX SECTION EQUIVALENT 79-INCH CIRCULAR

Figure 118

Figure 119

CULVERT CAPACITY 7×7-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 94-INCH CIRCULAR

Figure 120

CULVERT CAPACITY 8×4-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 76-INCH CIRCULAR

Figure 121

Figure 122

Figure 123

CULVERT CAPACITY $8 \times 7-F O O T$ (SPAN x RISE) BOX SECTION EQUIVALENT 101-INCH CIRCULAR

Figure 124

Figure 125
CULVERT CAPACITY
9×5 SFOOT (SPAN \times RISE) BOX SECTION
EQUIVALENT 90 INCH CIRCULAR

Figure 126

CULVERT CAPACITY
 9×6-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 99-INCH CIRCULAR

Figure 127

Figure 128

Figure 129

Figure 130

Figure 131

Figure 132

CULVERT CAPACITY 10×7-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 112-INCH CIRCULAR

Figure 133
$10 \times$ B-FOOT (SPAN \times RISE) BEX SECTION
EQUIVALENT 120 INCH CIRCULAR

Figure 134

CULVERT CAPACITY 10×9-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 128-INCH CIRCULAR

Figure 135

CULVERT CAPACITY
 10×10-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 135-INCH CIRCULAR

Figure 136

CULVERT CAPACITY 11×4-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 88-INCH CIRCULAR

Figure 137

CULVERT CAPACITY 11×6-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 109-INCH CIRCULAR

Figure 138

CULVERT CAPACITY 11×8-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 126-INCH CIRCULAR

Figure 139

CULVERT CAPACITY 11×10-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 141-INCH CIRCULAR

Figure 140

CULVERT CAPACITY 11×11-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 148-INCH CIRCULAR

Figure 141

CULVERT CAPACITY 12×4-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 92-INCH CIRCULAR

Figure 142

Figure 143

Figure 144

Figure 145

CULVERT CAPACITY 12×12-FOOT (SPAN x RISE) BOX SECTION EQUIVALENT 161-INCH CIRCULAR

Figure 146
ESSENTIAL FEATURES OF TYPES OF INSTALLATIONS

Figure 147
EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

For earth weighing other than 120 pounds per cubic foot, multiply loads by wil20.

Figure 148
EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

Figure 149
EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

For earth weighing other than 120 pounds per cubic foot, multiply loads by w/120.

Figure 150
EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

$$
\text { SATURATED TOP SOIL COHESION TERM } 2 \mathrm{C}_{\mathrm{t}} \mathrm{~B}_{\mathrm{t}}
$$

Figure 151
EARTH LOAD ON JACKED OR TUNNELED INSTALLATIONS

For earth weighing other than 120 pounds per cubic foot, multiply loads by w/120.

Figure 152

EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

Figure 153
EARTH LOADS JACKED OR TUNNELED INSTALLATIONS

For earth weighing other than 120 pounds per cubic foot, multiply loads by w/120.

Figure 154
EARTH LOADS ON JACKED OR TUNNELED INSTALLATIONS

Figure 155
TRENCH BACKFILL LOADS ON VERTICAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SAND AND GRAVEL $K \mu^{\prime}=0.165$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 156

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 157
TRENCH BACKFILL LOADS ON VERTICAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SATURATED TOP SOIL $\mathrm{K} \mu^{\prime}=0.150$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 158

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $k_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 159
TRENCH BACKFILL LOADS ON VERTICAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 160
TRENCH BACKFILL LOADS ON VERTICAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 161
TRENCH BACKFILL LOADS ON VERTICAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL
100,000 SATURATED CLAY K $\mu^{\prime}=0.110$

For backfill weighing 110 pounds per cubic foot, increase loads 10\%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 162

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 163

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 164
TRENCH BACKFILL LOADS ON HORIZONTAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL
SAND AND GRAVEL $K \mu^{\prime}=0.165$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 165
TRENCH BACKFILL LOADS ON HORIZONTAL ELLIPTICAL PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 166
TRENCH BACKFILL LOADS ON HORIZONTAL ELLIPTICAL PIPE 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SATURATED TOP SOIL $K \mu^{\prime}=0.150$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 167

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 168

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 169
TRENCH BACKFILL LOADS ON HORIZONTAL ELLIPTICAL PIPE 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Iransition loads and widths based on $K \mu=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 170

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 171
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SAND AND GRAVEL $K \mu^{\prime}=0.165$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 172
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SAND AND GRAVEL $K_{\mu}{ }^{\prime}=0.165$

PIPE

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc
Transition loads and widths based on $K_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 173
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SATURATED TOP SOIL $K \mu^{\prime}=0.150$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 174

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $k_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure 175
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL ORDINARY CLAY $K \mu^{\prime}=0.130$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 176
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure 177
TRENCH BACKFILL LOADS ON ARCH PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SATURATED CLAY $K \mu^{\prime}=0.110$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment arıation

Figure 178

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $\kappa_{\mu}=0.19, r_{\text {sd }}=0.7$ and $\rho=0.7$ in the embankment equation

Figure 179
EMBANKMENT FILL LOADS ON VERTICAL ELLIPTICAL PIPE POSITIVE PROJECTING $\quad r_{\text {sd }} p=0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 180

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 181

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 182

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 183

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase Interpolate for intermediate pipe sizes.

Figure 184

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 185

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 186
EMBANKMENT FILL LOADS ON HORIZONTAL ELLIPTICAL PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 187

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 188
EMBANKMENT FILL LOADS ON HORIZONTAL ELLIPTICAL PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 189
EMBANKMENT FILL LOADS ON ARCH PIPE
POSITIVE PROJECTING $\quad r_{s d} p=0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 190

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 191

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 192
EMBANKMENT FILL LOADS ON ARCH PIPE
POSITIVE PROJECTING $\quad r_{s d} p=0.5 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 193
Embankment fill loads on arch pipe POSITIVE PROJECTING $\quad r_{s d} p=1.0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure 194
EmBANKMENT FILL LOADS ON CIRCULAR PIPE NEGATIVE PROJECTING $\mathrm{p}^{\prime}=0.5 \quad \mathrm{r}_{\mathrm{sd}}=0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 195
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\quad \mathrm{p}^{\prime}=0.5 \quad \mathrm{r}_{\mathrm{sd}}=-0.1 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. interpolate for intermediate trench widths.

Figure 196
EMBANKMENT FILL LOADS ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 197

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. interpolate for intermediate trench widths.

Figure 198
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\quad p^{\prime}=0.5 \quad r_{s d}=-1.0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 199

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpoiate for intermediate trenich widths.

Figure 200
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $p^{\prime}=1.0 \quad r_{s d}=-0.1 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%, for 120 pounds increase 20%, etc interpolate for intermediate trench widths.

Figure 201

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 202
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\quad \mathrm{p}^{\prime}=1.0 \quad \mathrm{r}_{\mathrm{sd}}=-0.5 \quad \mathbf{1 0 0}$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths

Figure 203

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 204

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc Interpolate for intermediate trench widths.

Figure 205

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 206
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\quad \mathrm{p}^{\prime}=1.5 \quad \mathrm{r}_{\mathrm{sd}}=-0.3 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 207
Embankment fill loads ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. interpolate for intermediate trench widths.

Figure 208
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\mathrm{p}^{\prime}=1.5 \quad \mathrm{r}_{\mathrm{sd}}=-1.0 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 209
EMBANKMENT FILL LOADS ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 210
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\mathrm{p}^{\prime}=2.0 \quad \mathrm{r}_{\mathrm{sd}}=-0.1 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 211
EMBANKMENT FILL LOADS ON CIRCULAR PIPE NEGATIVE PROJECTING $\quad p^{\prime}=2.0 \quad r_{s d}=-0.3 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate trench widths.

Figure 212
EMBANKMENT FILL LOADS ON CIRCULAR PIPE
NEGATIVE PROJECTING $\quad p^{\prime}=2.0 \quad r_{s d}=-0.5 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. interpolate for intermediate trench widths.

Figure 213

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. internniate for intermeniate tranch widthe

Figure 214

LOAD COEFFICIENT DIAGRAM FOR TRENCH INSTALLATIONS

Figure 215 Loads on Concrete Pipe Installed Under Railways

* Fill for embankment installations $D L / B_{c}=1.40 \mathrm{wH}$ with w = 120pcf $1.40=$ Vertical Arching Factor

[^2]
Appendix A

Table A-1

SQUARE ROOTS OF DECIMAL NUMBER(S $\mathbf{S}^{1 / 2}$ IN MANNING'S FORMULA)

No.	-0	-1	-2	-3	-4	-5	-6	-7	- 8	-9
. 00001	. 003162	. 003317	. 003464	. 003606	. 003742	. 003873	. 004000	004123	. 004243	. 004359
. 00002	. 004472	. 004583	. 004690	. 004796	. 004899	. 005000	. 005099	. 005196	. 005292	. 005385
. 00003	. 005477	. 005568	. 005657	. 005745	. 005831	. 005916	. 006000	006083	. 006164	. 006245
. 00004	. 006325	. 006403	. 006481	. 006557	. 006633	. 006708	. 006782	. 006856	. 006928	. 007000
. 00005	. 007071	. 007141	. 007211	. 007280	. 007348	. 007416	. 007483	. 007550	. 007616	. 007681
. 00006	. 007746	. 007810	. 007874	. 007937	. 008000	. 008062	. 008124	. 008185	. 008246	. 008307
. 00007	. 008367	. 008426	. 008485	. 008544	. 008602	. 008660	. 008718	. 008775	. 008832	. 008888
. 00008	. 008944	. 009000	. 009055	. 009110	. 009165	. 009220	. 009274	. 009327	. 009381	. 009434
. 00009	. 009487	. 009539	. 009592	. 009644	. 009695	. 009747	. 009798	. 009849	. 009899	. 009950
. 00010	. 010000	. 010050	. 010100	. 010149	. 010198	. 010247	. 010296	. 010344	. 010392	. 010440
. 0001	. 01000	. 01049	. 01095	. 01140	. 01183	. 01225	. 01265	. 01304	. 01342	. 01378
. 0002	. 01414	. 01449	. 01483	. 01517	. 01549	. 01581	. 01612	. 01643	. 01673	. 01703
. 0003	. 01732	. 01761	. 01789	. 01817	. 01844	. 01871	. 01897	01924	. 01949	. 01975
. 0004	. 02000	. 02025	. 02049	. 02074	. 02098	. 02121	. 02145	. 02168	. 02191	. 02214
. 0005	. 02236	. 02258	. 02280	. 02302	. 02324	. 02345	. 02366	. 02387	. 02408	. 02429
. 0006	. 02449	. 02470	. 02490	. 02510	. 02530	. 02550	. 02569	. 02588	. 02608	. 02627
. 0007	. 02646	. 02665	. 02683	. 02702	. 02720	. 02739	. 02757	02775	. 02793	. 02811
. 0008	. 02828	. 02846	. 02864	. 02881	. 02898	. 02915	. 02933	. 02950	. 02966	. 02983
. 0009	. 03000	. 03017	. 03033	. 03050	. 03066	. 03082	. 03098	. 03114	. 03130	. 03146
. 0010	. 03162	. 03178	. 03194	. 03209	. 03225	. 03240	. 03256	. 03271	. 03286	. 03302
. 001	. 03162	. 03317	. 03464	. 03606	. 03742	. 03873	. 04000	. 04123	. 04243	. 04359
. 002	. 04472	. 04583	. 04690	. 04796	. 04899	. 05000	. 05099	. 05196	. 05292	. 05385
. 003	. 05477	. 05568	. 05657	. 05745	. 05831	. 05916	. 06000	. 06083	. 06164	. 06245
. 004	. 06325	. 06403	. 06481	. 06557	. 06633	. 06708	. 06782	. 06856	. 06928	. 07000
. 005	. 07071	. 07141	. 07211	. 07280	. 07348	. 07416	. 07483	. 07550	. 07616	. 07681
. 006	. 07746	. 07810	. 07874	. 07937	. 08000	. 08062	. 08124	. 08185	. 08246	. 08307
. 007	. 08367	. 08426	. 08485	. 08544	. 08602	. 08660	. 08718	. 08775	. 08832	. 08888
. 008	. 08944	. 09000	. 09055	. 09110	. 09165	. 09220	. 09274	. 09327	. 09381	. 09434
. 009	. 09487	. 09539	. 09592	. 09644	. 09695	. 09747	. 09798	. 09849	. 09899	. 09950
. 010	. 10000	. 10050	. 10100	. 10149	. 10198	. 10247	. 10296	. 10344	. 10392	. 10440
. 01	. 1000	. 1049	1095	. 1140	. 1183	. 1225	. 1265	. 1304	. 1342	. 1378
. 02	. 1414	. 1449	. 1483	. 1517	. 1549	. 1581	. 1612	. 1643	. 1673	. 1703
. 03	. 1732	. 1761	. 1789	. 1817	. 1844	. 1871	. 1897	1924	. 1949	. 1975
. 04	. 2000	. 2025	. 2049	. 2074	. 2098	. 2121	. 2145	. 2168	. 2191	. 2214
. 05	. 2236	. 2258	. 2280	. 2302	. 2324	. 2345	. 2366	. 2387	. 2408	. 2429
. 06	. 2449	. 2470	. 2490	. 2510	. 2530	. 2550	. 2569	. 2588	. 2608	. 2627
. 07	. 2646	. 2665	. 2683	. 2702	. 2720	. 2739	. 2757	. 2775	. 2793	. 2811
. 08	. 2828	. 2846	. 2864	. 2881	. 2898	. 2915	. 2933	. 2950	. 2966	. 2983
. 09	. 3000	. 3017	. 3033	. 3050	. 3066	. 3082	. 3098	. 3114	. 3130	. 3146
. 10	. 3162	. 3178	. 3194	. 3209	. 3225	. 3240	. 3256	. 3271	. 3286	. 3302

Table A-2
THREE-EIGHTHS POWERS OF NUMBERS

No.	0	2	4	6	8	No.	0	2	4	6	8
0	. 00	. 55	. 71	. 83	. 92	50	4.34	4.40	4.46	4.52	4.58
1	1.00	1.07	1.13	1.19	1.25	60	4.64	4.70	4.76	4.81	4.87
2	1.30	1.34	1.39	1.43	1.47	70	4.92	4.97	5.02	5.07	5.12
3	1.51	1.55	1.58	1.62	1.65	80	5.17	5.22	5.27	5.31	5.36
4	1.68	1.71	1.74	1.77	1.80	90	5.41	5.45	5.49	5.54	5.58
5	1.83	1.86	1.88	1.91	1.93	100	5.62	5.67	5.71	5.75	5.79
6	1.96	1.98	2.01	2.03	2.05	110	5.83	5.87	5.91	5.95	5.98
	2.07	2.10	2.12	2.14	2.16	120	6.02	6.06	6.10	6.13	6.17
8	2.18	2.20	2.22	2.24	2.26	130	6.20	6.24	6.28	6.31	6.35
9	2.28	2.30	2.32	2.34	2.35	140	6.38	6.41	6.45	6.48	6.51
10	2.37	2.39	2.41	2.42	2.44	150	6.55	6.58	6.61	6.64	6.68
11	2.46	2.47	2.49	2.51	2.52	160	6.71	6.74	6.77	6.80	6.83
12	2.54	2.56	2.57	2.59	2.60	170	6.86	6.89	6.92	6.95	6.98
13	2.62	2.63	2.65	2.66	2.68	180	7.01	7.04	7.07	7.10	7.12
14	2.69	2.71	2.72	2.73	2.75	190	7.15	7.18	7.21	7.24	7.27
15	2.76	2.77	2.79	2.80	2.81	200	7.29	7.32	7.35	7.37	7.40
16	2.83	2.84	2.86	2.87	2.88	210	7.43	7.46	7.48	7.51	7.54
17	2.89	2.91	2.92	2.93	2.94	220	7.56	7.58	7.61	7.63	7.66
18	2.96	2.97	2.98	2.99	3.00	230	7.69	7.71	7.73	7.76	7.78
19	3.02	3.03	3.04	3.05	3.06	240	7.81	7.83	7.86	7.88	7.91
20	3.08	3.09	3.10	3.11	3.12	250	7.93	7.95	7.98	8.00	8.02
21	3.13	3.14	3.15	3.17	3.18	260	8.05	8.07	8.09	8.12	8.14
22	3.19	3.20	3.21	3.22	3.23	270	8.16	8.18	8.21	8.23	8.25
23	3.24	3.25	3.26	3.27	3.28	280	8.27	8.30	8.32	8.34	8.36
24	3.29	3.30	3.31	3.32	3.33	290	8.38	8.40	8.43	8.45	8.47
25	3.34	3.35	3.36	3.37	3.38	300	8.49	8.51	8.53	8.55	8.57
26	3.39	3.40	3.41	3.42	3.43	310	8.60	8.62	8.64	8.66	8.68
27	3.44	3.45	3.46	3.47	3.48	320	8.70	8.72	8.74	8.76	8.78
28	3.49	3.50	3.51	3.52	3.53	330	8.80	8.82	8.84	8.86	8.88
29	3.54	3.54	3.55	3.56	3.57	340	8.90	8.92	8.94	8.96	8.98
30	3.58	3.59	3.60	3.61	3.62	350	9.00	9.01	9.03	9.05	9.07
31	3.62	3.63	3.64	3.65	3.66	360	9.09	9.11	9.13	9.15	9.17
32	3.67	3.68	3.69	3.69	3.70	370	9.18	9.20	9.22	9.24	9.26
33	3.71	3.72	3.73	3.74	3.74	380	9.28	9.30	9.31	9.33	9.35
34	3.75	3.76	3.77	3.78	3.79	390	9.37	9.39	9.40	9.42	9.44
35	3.79	3.80	3.81	3.82	3.83	400	9.46	9.48	9.49	9.51	9.53
36	3.83	3.84	3.85	3.86	3.87	410	9.55	9.56	9.58	9.60	9.61
37	3.87	3.88	3.89	3.90	3.91	420	9.63	9.65	9.67	9.68	9.70
38	3.91	3.92	3.93	3.94	3.94	430	9.72	9.73	9.75	9.77	9.78
39	3.95	3.96	3.97	3.97	3.98	440	9.80	9.82	9.83	9.85	9.87
40	3.99	4.00	4.00	4.01	4.02	450	9.88	9.90	9.92	9.93	9.95
41	4.03	4.03	4.04	4.05	4.05	460	9.97	9.98	10.00	10.01	10.03
42	4.06	4.07	4.08	4.08	4.09	470	10.05	10.06	10.08	10.09	10.11
43	4.10	4.10	4.11	4.12	4.13	480	10.13	10.14	10.16	10.17	10.19
44	4.13	4.14	4.15	4.15	4.16	490	10.21	10.22	10.24	10.25	10.27
45	4.17	4.18	4.18	4.19	4.20	500	10.28	10.30	10.31	10.33	10.34
46	4.20	4.21	4.22	4.22	4.23	510	10.36	10.37	10.39	10.41	10.42
47	4.24	4.24	4.25	4.26	4.26	520	10.44	10.45	10.47	10.48	10.50
48	4.27	4.28	4.28	4.29	4.30	530	10.51	10.52	10.54	10.55	10.57
49	4.30	4.31	4.32	4.32	4.33	540	10.58	10.60	10.61	10.63	10.64

Table A-3
TWO-THIRDS POWERS OF NUMBERS

No.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	000	. 046	. 074	. 097	117	136	153	. 170	. 186	. 201
. 1	. 215	229	. 243	256	. 269	. 282	. 295	. 307	319	. 331
. 2	342	. 353	. 364	. 375	. 386	. 397	. 407	. 418	. 428	. 438
. 3	. 448	. 458	468	477	487	. 497	. 506	. 515	. 525	. 534
. 4	. 543	. 552	. 561	570	. 578	587	. 596	. 604	. 613	. 622
. 5	. 630	638	. 647	655	. 663	. 671	. 679	687	. 695	. 703
. 6	. 711	. 719	. 727	. 735	. 743	. 750	. 758	. 765	. 773	. 781
. 7	. 788	. 796	. 803	. 811	. 818	. 825	. 832	. 840	. 847	. 855
. 8	. 862	. 869	. 876	. 883	. 890	. 897	. 904	. 911	. 918	. 925
. 9	. 932	. 939	. 946	. 953	. 960	. 966	. 973	. 980	. 987	. 993
1.0	1.000	1.007	1.013	1.020	1.027	1.033	1.040	1.046	1.053	1.059
1.1	1.065	1.072	1.078	1.085	1.091	1.097	1.104	1.110	1.117	1.123
1.2	1.129	1.136	1.142	1.148	1.154	1.160	1.167	1.173	1.179	1.185
1.3	1.191	1.197	1.203	1.209	1.215	1.221	1.227	1.233	1.239	1.245
1.4	1.251	1.257	1.263	1.269	1.275	1.281	1.287	1.293	1.299	1.305
1.5	1.310	1.316	1.322	1.328	1.334	1.339	1.345	1.351	1.357	1.362
1.6	1.368	1.374	1.379	1.385	1.391	1.396	1.402	1.408	1.413	1.419
1.7	1.424	1.430	1.436	1.441	1.447	1.452	1.458	1.463	1.469	1.474
1.8	1.480	1.485	1.491	1.496	1.502	1.507	1.513	1.518	1.523	1.529
1.9	1.534	1.539	1.545	1.550	1.556	1.561	1.566	1.571	1.577	1.582
2.0	1.587	1.593	1.598	1.603	1.608	1.613	1.619	1.624	1.629	1.634
2.1	1.639	1.645	1.650	1.655	1.660	1.665	1.671	1.676	1.681	1.686
2.2	1.691	1.697	1.702	1.707	1.712	1.717	1.722	1.727	1.732	1.737
2.3	1.742	1.747	1.752	1.757	1.762	1.767	1.772	1.777	1.782	1.787
2.4	1.792	1.797	1.802	1.807	1.812	1.817	1.822	1.827	1.832	1.837
2.5	1.842	1.847	1.852	1.857	1.862	1.867	1.871	1.876	1.881	1.886
2.6	1.891	1.896	1.900	1.905	1.910	1.915	1.920	1.925	1.929	1.934
2.7	1.939	1.944	1.949	1.953	1.958	1.963	1.968	1.972	1.977	1.982
2.8	1.987	1.992	1.996	2.001	2.006	2.010	2.015	2.020	2.024	2.029
2.9	2.034	2.038	2.043	2.048	2.052	2.057	2.062	2.066	2.071	2.075
3.0	2.080	2.085	2.089	2.094	2.099	2.103	2.108	2.112	2.117	2.122
3.1	2.126	2.131	2.135	2.140	2.144	2.149	2.153	2.158	2.163	2.167
3.2	2.172	2.176	2.180	2.185	2.190	2.194	2.199	2.203	2.208	2.212
3.3	2.217	2.221	2.226	2.230	2.234	2.239	2.243	2.248	2.252	2.257
3.4	2.261	2.265	2.270	2.274	2.279	2.283	2.288	2.292	2.296	2.301
3.5	2.305	2.310	2.314	2.318	2.323	2.327	2.331	2.336	2.340	2.345
3.6	2.349	2.353	2.358	2.362	2.366	2.371	2.375	2.379	2.384	2.388
3.7	2.392	2.397	2.401	2.405	2.409	2.414	2.418	2.422	2.427	2.431
3.8	2.435	2.439	2.444	2.448	2.452	2.457	2.461	2.465	2.469	2.474
3.9	2.478	2.482	2.486	1.490	2.495	2.499	2.503	2.507	2.511	2.516
4.0	2.520	2.524	2.528	2.532	2.537	2.541	2.545	2.549	2.553	2.558
4.1	2.562	2.566	2.570	2.574	2.579	2.583	2.587	2.591	2.595	2.599
4.2	2.603	2.607	2.611	2.616	2.620	2.624	2.628	2.632	2.636	2.640
4.3	2.644	2.648	2.653	2.657	2.661	2.665	2.669	2.673	2.677	2.681
4.4	2.685	2.689	2.693	2.698	2.702	2.706	2.710	2.714	2.718	2.722
4.5	2.726	2.730	2.734	2.738	2.742	2.746	2.750	2.754	2.758	2.762
4.6	2.766	2.770	2.774	2.778	2.782	2.786	2.790	2.794	2.798	2.802
4.7	2.806	2.810	2.814	2.818	2.822	2.826	2.830	2.834	2.838	2.842
4.8	2.846	2.850	2.854	2.858	2.862	2.865	2.869	2.873	2.877	2.881
4.9	2.885	2.889	2.893	2.897	2.901	2.904	2.908	2.912	2.916	2.920

Table A-4
EIGHT-THIRDS POWERS OF NUMBERS

No.	. 00	. 02	. 04	. 06	. 08	No.	. 00	. 02	. 04	. 06	. 08
0.1	. 002	. 004	. 005	. 008	. 010	5.1	77.1	77.9	78.7	79.5	80.3
0.2	. 014	. 018	. 022	. 028	. 034	5.2	81.2	82.0	82.8	83.7	84.5
0.3	. 040	. 048	. 056	. 066	. 076	5.3	85.4	86.3	87.1	88.0	88.9
0.4	. 087	. 099	. 112	. 126	. 141	5.4	89.8	90.6	91.5	92.4	93.3
0.5	. 157	. 175	. 193	. 213	. 234	5.5	94.3	95.2	96.1	97.0	98.0
0.6	. 256	. 279	. 304	. 330	. 358	5.6	98.9	99.8	101	102	103
0.7	. 386	. 416	. 448	. 481	. 516	5.7	104	105	106	107	108
0.8	. 552	. 589	. 628	. 669	. 711	5.8	109	110	111	112	113
0.9	. 755	. 801	. 848	. 897	. 948	5.9	114	115	116	117	118
1.0	1.000	1.054	1.110	1.168	1.228	6.0	119	120	121	122	123
1.1	1.29	1.35	1.42	1.49	1.55	6.1	124	125	126	128	129
1.2	1.63	1.70	1.77	1.85	1.93	6.2	130	131	132	133	134
1.3	2.01	2.10	2.18	2.27	2.36	6.3	135	137	138	139	140
1.4	2.45	2.55	2.64	2.74	2.84	6.4	141	142	144	145	146
1.5	2.95	3.05	3.16	3.27	3.39	6.5	147	148	150	151	152
1.6	3.50	3.62	3.74	3.86	3.99	6.6	153	155	156	157	158
1.7	4.12	4.25	4.38	4.51	4.65	6.7	160	161	162	163	165
1.8	4.79	4.94	5.08	5.23	5.39	6.8	166	167	169	170	171
1.9	5.54	5.69	5.85	6.02	6.18	6.9	173	174	175	177	178
2.0	6.35	6.52	6.69	6.87	7.05	7.0	179	181	182	183	185
2.1	7.23	7.42	7.60	7.80	7.99	7.1	186	188	189	190	192
2.2	8.19	8.39	8.59	8.80	9.00	7.2	193	195	196	198	199
2.3	9.22	9.43	9.65	9.87	10.10	7.3	201	202	203	205	. 206
2.4	10.33	10.56	10.79	11.03	11.27	7.4	208	209	211	212	214
2.5	11.51	11.76	12.01	12.26	12.52	7.5	216	217	219	220	222
2.6	12.8	13.0	13.3	13.6	13.9	7.6	223	225	226	228	230
2.7	14.1	14.4	14.7	15.0	15.3	7.7	231	233	234	236	238
2.8	15.6	15.9	16.2	16.5	16.8	7.8	239	241	243	244	246
2.9	17.1	17.4	17.7	18.1	18.4	7.9	248	249	251	253	254
3.0	18.7	19.1	19.4	19.7	20.1	8.0	256	258	259	261	263
3.1	20.4	20.8	21.1	21.5	21.9	8.1	265	266	268	270	272
3.2	22.2	22.6	23.0	23.4	23.7	8.2	273	275	277	279	281
3.3	24.1	24.5	24.9	25.3	25.7	8.3	282	284	286	288	290
3.4	26.1	26.6	27.0	27.4	27.8	8.4	292	293	295	297	299
3.5	28.2	28.7	29.1	29.5	30.0	8.5	301	303	305	307	309
3.6	30.4	30.9	31.4	31.8	32.3	8.6	310	312	314	316	318
3.7	32.7	33.2	33.7	34.2	34.7	8.7	320	322	324	326	328
3.8	35.2	35.7	36.2	36.7	37.2	8.8	330	332	334	336	338
3.9	37.7	38.2	38.7	39.3	39.8	8.9	340	342	344	346	348
4.0	40.3	40.9	41.4	42.0	42.5	9.0	350	353	355	357	359
4.1	43.1	43.6	44.2	44.8	45.3	9.1	361	363	365	367	369
4.2	45.9	46.5	47.1	47.7	48.3	9.2	372	374	376	378	380
4.3	48.9	49.5	50.1	50.7	51.4	9.3	382	385	387	390	391
4.4	52.0	52.6	53.3	53.9	54.5	9.4	394	-396	398	400	403
4.5	55.2	55.9	56.5	57.2	57.9	9.5	405	407	409	412	414
4.6	58.5	59.2	59.9	60.6	61.3	9.6	416	419	421	423	426
4.7	62.0	62.7	63.4	64.1	64.8	9.7	428	429	433	435	437
4.8	65.6	66.3	67.0	67.8	68.5	9.8	440	442	445	447	449
4.9	69.3	70.0	70.8	71.6	72.3	9.9	452	454	457	459	462
5.0	73.1	73.9	74.7	75.5	76.3	10.0	464	467	469	472	474

Table A-5

SQUARE ROOTS AND CUBE ROOTS OF NUMBERS

No.	Square Root	Cube Root	No.	Square Root	Cube Root	No.	Square Root	Cube Root	No	Square Root	Cube Root
1	1.000	1.000	26	5.099	2.963	51	7.141	3.708	76	8.718	4.236
2	1.414	1.260	27	5.196	3.000	52	7.211	3.733	77	8.775	4.254
3	1.732	1.442	28	5.292	3.037	53	7.280	3.756	78	8.832	4.273
4	2.000	1.587	29	5.385	3.072	54	7.348	3.780	79	8.888	4.291
5	2.236	1.710	30	5.477	3.107	55	7.416	3.803	80	8.944	4.309
6	2.449	1.817	31	5.568	3.141	56	7.483	3.826	81	9.000	4.327
7	2.646	1.913	32	5.657	3.175	57	7.550	3.849	82	9.055	4.345
8	2.828	2.000	33	5.745	3.208	58	7.616	3.871	83	9.110	4.362
9	3.000	2.080	34	5.831	3.240	59	7.681	3.893	84	9.165	4.380
10	3.162	2.154	35	5.916	3.271	60	7.746	3.915	85	9.220	4.397
11	3.317	2.224	36	6.000	3.202	61	7.810	3.937	86	9.274	4.414
12	3.464	2.289	37	6.083	3.332	62	7.874	3.958	87	9.327	4.431
13	3.606	2.351	38	6.164	3.362	63	7.937	3.979	88	9.381	4.448
14	3.742	2.410	39	6.245	3.391	64	8.000	4.000	89	9.434	4.465
15	3.873	2.466	40	6.325	3.420	65	8.062	4.021	90	9.487	4.481
16	4.000	2.520	41	6.403	3.448	66	8.124	4.041	91	9.539	4.498
17	4.123	2.571	42	6.481	3.476	67	8.185	4.062	92	9.592	4.514
18	4.243	2.621	43	6.557	3.503	68	8.246	4.082	93	9.644	4.531
19	4.359	2.668	44	6.633	3.530	69	8.307	4.102	94	9.695	4.547
20	4.472	2.714	45	6.708	3.557	70	8.367	4.121	95	9.747	4.563
21	4.583	2.759	46	6.782	3.583	71	8.426	4.141	96	9.798	4.579
22	4.690	2.802	47	6.856	3.609	72	8.485	4.160	97	9.849	4.595
23	4.796	2.844	48	6.928	3.634	73	8.544	4.179	98	9.900	4.610
24	4.899	2.885	49	7.000	3.659	74	8.602	4.198	99	9.950	4.626
25	5.000	2.924	50	7.071	3.684	75	8.660	4.217	100	10.000	4.642

For Square Roots - moving the decimal point 2 places in the number requires a change of 1 place in the square root. For Cube Roots - moving the decimal point 3 places in the number requires a change of 1 place in the cube root.

Table A-6

DECIMAL EQUIVALENTS OF INCHES AND FEET

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
\& \text { Fractions } \\
\& \text { of }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{|c|}
Inch \\
Equiv- \\
alents \\
to \\
toot \\
Frac- \\
Frans \\
tions
\end{tabular}} \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& \text { Fractions } \\
\& \text { of }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{|l|}
Inch \\
Equiv- \\
alents \\
to \\
to \\
Foot \\
Frac- \\
tions \\
tion
\end{tabular}} \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& \text { Fractions } \\
\& \text { of }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{|c|}
Inch \\
Equiv- \\
alents \\
ato \\
Foot \\
Frac- \\
tions \\
\hline
\end{tabular}} \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& \text { Fractions } \\
\& \text { of }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline Inch \\
Equiv- \\
alents \\
to \\
Foot \\
Frac- \\
Fions \\
tion \\
\hline
\end{tabular}} \\
\hline Inch \& Foot \& \& Inch \& Foot \& \& Inch \& Foot \& \& Inch \& Foot \& \\
\hline \& \& \[
1 / 16
\] \& \& \& \& \& \& \& \& \& \[
91 / 16
\] \\
\hline 1/64 \& \[
\begin{aligned}
\& .0156 \\
\& .0208 \\
\& .0260
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4 \\
\& 5 / 16
\end{aligned}
\] \& 1/64 \& \[
\begin{array}{r}
265625 \\
.270833 \\
.276042
\end{array}
\] \& \[
\begin{aligned}
\& 33 / 16 \\
\& 31 / 4 \\
\& 35 / 16
\end{aligned}
\] \& 33/64 \& \[
\begin{aligned}
\& .515625 \\
\& .520833 \\
\& .526042
\end{aligned}
\] \& \[
\begin{aligned}
\& 63 / 16 \\
\& 61 / 4 \\
\& 65 / 16
\end{aligned}
\] \& 49/6 \& \[
\text { . } 770833
\] \& \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4 \\
\& 5 / 16
\end{aligned}
\] \\
\hline 1/32 \& \& \(3 / 8\)
\(7 / 1 / 2\) \& 9/32 \& \[
.2812 .
\] \& \[
\begin{aligned}
\& 33 / 8 \\
\& 3^{7 / 16} \\
\& 3^{1 / 2}
\end{aligned}
\] \& 17/32 \& \[
\begin{aligned}
\& .531250 \\
\& .536458
\end{aligned}
\] \& \[
\begin{aligned}
\& 6^{3 / 8} \\
\& 6^{7 / 1} 6 \\
\& 6^{1 / 2}
\end{aligned}
\] \& 25/32 \& .781250 .786458 .791667 \& \[
\begin{aligned}
\& 3 / 8 \\
\& 7 / 10 \\
\& 1 / 20
\end{aligned}
\] \\
\hline 3/64 \& \[
\begin{aligned}
\& .046875 \\
\& .052083 \\
\& .057292
\end{aligned}
\] \& \[
\begin{array}{|c}
9 / 16 \\
5 / 8 \\
1 / 16
\end{array}
\] \& 19/64 \& \[
\begin{array}{|l}
.302 \\
.307
\end{array}
\] \& \[
\begin{aligned}
\& 3916 \\
\& 35 / 8 \\
\& 3^{11 / 16}
\end{aligned}
\] \& 35/64 \& \[
\begin{aligned}
\& 2083 \\
\& 7292
\end{aligned}
\] \& \[
\begin{aligned}
\& 65 / 8 \\
\& 611 / 16
\end{aligned}
\] \& 51/64 \& \[
\begin{aligned}
\& 302083 \\
\& 307292
\end{aligned}
\] \& \[
\begin{aligned}
\& 9 / 16 \\
\& 5 / 8 \\
\& 11 / 16
\end{aligned}
\] \\
\hline 1/16 \& \[
\begin{aligned}
\& .062500 \\
\& .067708 \\
\& .072917
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 / 4 \\
\& 13 / 16
\end{aligned}
\] \& 5/16 \& \[
\begin{array}{|l|}
.312500 \\
.317708
\end{array}
\] \& \[
\begin{aligned}
\& 33 / 4 \\
\& 3^{13 / 16}
\end{aligned}
\] \& \% 16 \& \[
\begin{aligned}
\& .562500 \\
\& .567708
\end{aligned}
\] \& \[
\begin{aligned}
\& 63 / 4 \\
\& 6^{13 / 10}
\end{aligned}
\] \& 13/16 \& \[
\begin{aligned}
\& .812500 \\
\& .817708
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 / 4 \\
\& 13 / 16
\end{aligned}
\] \\
\hline 5/64 \& \[
\begin{aligned}
\& .078125 \\
\& .083333 \\
\& .088542
\end{aligned}
\] \& \[
\begin{aligned}
\& 15 / 16 \\
\& 1_{1 / 16}
\end{aligned}
\] \& 21/64 \& \[
\begin{aligned}
\& .333333 \\
\& .338542
\end{aligned}
\] \& \[
\begin{aligned}
\& 3^{15 / 16} \\
\& 4 \\
\& 4^{1 / 16}
\end{aligned}
\] \& 37/64 \& \[
.583333
\] \& \[
\begin{aligned}
\& 6^{15 / 16} \\
\& 7 \\
\& 71 / 16
\end{aligned}
\] \& 53/64 \& \[
\begin{aligned}
\& .828125 \\
\& .833333 \\
\& .838542
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& 915 / 16 \\
\& 10 \\
\& 101 / 16
\end{aligned}\right.
\] \\
\hline 3/32 \& \[
\begin{aligned}
\& .093750 \\
\& .098958 \\
\& .104167
\end{aligned}
\] \& \[
\begin{aligned}
\& 11 / 8 \\
\& 13 / 6 \\
\& 11 / 4
\end{aligned}
\] \& \(11 / 32\) \& \[
\begin{aligned}
\& .343750 \\
\& .348958 \\
\& .354167
\end{aligned}
\] \& \[
\begin{aligned}
\& 41 / 8 \\
\& 43 / 16 \\
\& 4^{1 / 4}
\end{aligned}
\] \& 19/32 \& \[
\begin{aligned}
\& .598958 \\
\& .604167
\end{aligned}
\] \& \[
\begin{aligned}
\& 71 / 8 \\
\& 73 / 16 \\
\& 71 / 4
\end{aligned}
\] \& 27/32 \& \[
\begin{aligned}
\& 348958 \\
\& 354167
\end{aligned}
\] \& \[
\begin{aligned}
\& 101 / 8 \\
\& 103 / 16 \\
\& 101 / 4
\end{aligned}
\] \\
\hline 7/64 \& \[
\begin{aligned}
\& .109375 \\
\& .114583 \\
\& .119792
\end{aligned}
\] \& \[
\begin{aligned}
\& 15 / 16 \\
\& 13 / 8 \\
\& 1^{1 / 16}
\end{aligned}
\] \& 23/64 \& \[
\begin{aligned}
\& .3593 \\
\& .3645 \\
\& .3697!
\end{aligned}
\] \& \[
\begin{aligned}
\& 45 / 16 \\
\& 43 / 8 \\
\& 47 / 16
\end{aligned}
\] \& 39/64 \& \[
.614583
\] \& \[
\begin{aligned}
\& 75 / 16 \\
\& 73 / 8 \\
\& 77 / 16
\end{aligned}
\] \& 55/64 \& \[
\begin{aligned}
\& .864583 \\
\& .869792
\end{aligned}
\] \& \[
\begin{aligned}
\& 105 / 16 \\
\& 103 / 8 \\
\& 107 / 16
\end{aligned}
\] \\
\hline 1/8 \& \[
\begin{aligned}
\& .125000 \\
\& .130208 \\
\& .135417
\end{aligned}
\] \& \[
\begin{aligned}
\& 11 / 2 \\
\& 19 / 16 \\
\& 15 / 8
\end{aligned}
\] \& 3/8 \& \[
.380208
\] \& \[
4 \%
\] \& 5/8 \& \[
630208
\] \& \[
\begin{aligned}
\& 71 / 2 \\
\& 79 / 16 \\
\& 75 / 8
\end{aligned}
\] \& 7/8 \& \[
\begin{aligned}
\& 75000 \\
\& 80208 \\
\& 85417
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& 101 / 2 \\
\& 109 / 10 \\
\& 105 / 8
\end{aligned}\right.
\] \\
\hline 9/64 \& \[
\begin{aligned}
\& .140625 \\
\& .145833 \\
\& .151042
\end{aligned}
\] \& \[
\begin{aligned}
\& 111 / 16 \\
\& 1^{3 / 4} \\
\& 1^{13 / 16}
\end{aligned}
\] \& 25/64 \& \[
\begin{array}{|l}
.390625 \\
.395833 \\
.401042
\end{array}
\] \& \[
\left|\begin{array}{l}
411 / 16 \\
43 / 4 \\
413 / 16
\end{array}\right|
\] \& 41/64 \& \[
\begin{aligned}
\& .645833 \\
\& .651042
\end{aligned}
\] \& \[
\begin{aligned}
\& 73 / 4 \\
\& 713 / 16
\end{aligned}
\] \& 57/6, \& \[
\begin{aligned}
\& .895833 \\
\& .901042
\end{aligned}
\] \& \[
\left\{\begin{array}{l}
10^{11 / 16} \\
10^{3 / 46} \\
10^{13} / 16
\end{array}\right.
\] \\
\hline 5/32 \& \[
\begin{aligned}
\& .156250 \\
\& .161458 \\
\& .166667
\end{aligned}
\] \& \[
\begin{aligned}
\& 17 / 8 \\
\& 1^{15 / 16}
\end{aligned}
\] \& 13/32 \& \[
\begin{array}{|l}
.406250 \\
.411458 \\
.416667
\end{array}
\] \& \[
\begin{aligned}
\& 47 / 8 \\
\& 415 / 16 \\
\& 5
\end{aligned}
\] \& 21/32 \& \[
\begin{aligned}
\& .656250 \\
\& .661458 \\
\& .666667
\end{aligned}
\] \& \[
\begin{array}{|l}
77 / 8 \\
715 / 16 \\
8
\end{array}
\] \& 29/32 \& \[
\begin{aligned}
\& .906250 \\
\& .911458 \\
\& .916667
\end{aligned}
\] \& \[
\left\{\begin{array}{l}
107 / 8 \\
10^{15 / 16} \\
11
\end{array}\right.
\] \\
\hline \(11 / 64\) \& \[
\begin{aligned}
\& .171875 \\
\& .177083 \\
\& .182292
\end{aligned}
\] \& \[
\begin{aligned}
\& 21 / 16 \\
\& 21 / 8 \\
\& 23 / 16
\end{aligned}
\] \& 27/64 \& \[
\begin{aligned}
\& .421875 \\
\& .427083 \\
\& .432292
\end{aligned}
\] \& \[
\begin{aligned}
\& 51 / 8 \\
\& 53 / 16
\end{aligned}
\] \& 43/64 \& \[
\begin{aligned}
\& .671875 \\
\& .677083 \\
\& .682292
\end{aligned}
\] \& \[
\begin{array}{|l|}
81 / 16 \\
81 / 8 \\
83 / 16
\end{array}
\] \& \% \(/ 6\) \& \[
\begin{aligned}
\& .927083 \\
\& .932292
\end{aligned}
\] \& \begin{tabular}{l}
\(111 / 16\) \\
\(111 / 8\) \\
\(113 / 16\)
\end{tabular} \\
\hline 3/18 \& \[
\begin{aligned}
\& .187500 \\
\& .192708 \\
\& .197917
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \frac{1 / 4}{4} \\
\& 25 / 6 . \\
\& 23 / 8
\end{aligned}
\] \& 7/16 \& \[
\begin{aligned}
\& .437500 \\
\& .442708 \\
\& .447917
\end{aligned}
\] \& \[
\begin{aligned}
\& 51 / 4 \\
\& 55 / 16 \\
\& 53 / 8
\end{aligned}
\] \& 11/16 \& \[
\begin{array}{|l|}
\hline .687500 \\
.692708 \\
.67917
\end{array}
\] \& \[
\begin{array}{|l|}
81 / 4 \\
85 / 16 \\
.83 / 8
\end{array}
\] \& 15/16 \& \[
\begin{aligned}
\& .942708 \\
\& .947917
\end{aligned}
\] \& \[
\begin{aligned}
\& 111 / 4 \\
\& 11^{5 / 16} \\
\& 11^{3 / 8}
\end{aligned}
\] \\
\hline 13/64 \& \[
\begin{aligned}
\& .203125 \\
\& .208333 \\
\& .213542
\end{aligned}
\] \& \[
\begin{aligned}
\& 27 / 16 \\
\& 21 / 2 \\
\& 29 / 16
\end{aligned}
\] \& 29/64 \& \[
\begin{aligned}
\& .453125 \\
\& .458333 \\
\& .463542
\end{aligned}
\] \& \[
\begin{aligned}
\& 57 / 10 \\
\& 51 / 2 \\
\& 59 / 6
\end{aligned}
\] \& 45/64 \& \[
\begin{aligned}
\& .703125 \\
\& .708333 \\
\& .713542
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 87 / 16 \\
81 / 2 \\
89 / 16
\end{array}
\] \& 61/64 \& \[
\begin{array}{r}
.953125 \\
.958333 \\
.963542
\end{array}
\] \& \(117 / 16\) \(111 / 2\) 11\% \\
\hline 7/32 \& \[
\begin{aligned}
\& .218750 \\
\& .223958 \\
\& .229167
\end{aligned}
\] \& \[
\begin{aligned}
\& 25 / 8 \\
\& 2^{11 / 16}
\end{aligned}
\] \& 15/32 \& \[
\begin{aligned}
\& .468750 \\
\& .473958 \\
\& .479167
\end{aligned}
\] \& \[
\begin{aligned}
\& 55 / 8 \\
\& 511 / 16
\end{aligned}
\] \& 23/32 \& \[
\begin{aligned}
\& .723958 \\
\& .729167
\end{aligned}
\] \& \[
\begin{array}{|l|l}
85 / 8 \\
811 / 16 \\
83 / 4
\end{array}
\] \& \(31 / 32\) \& \[
\begin{aligned}
\& .968750 \\
\& .973958 \\
\& .979167
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& 115 / 8 \\
\& 1111 / 16 \\
\& 113 / 46
\end{aligned}\right.
\] \\
\hline \(15 / 64\)
\(1 / 4\) \& \[
\begin{aligned}
\& .234375 \\
\& .229583 \\
\& .244792
\end{aligned}
\] \& \[
\begin{aligned}
\& 213 / 16 \\
\& 27 / 8 \\
\& 2^{15 / 16}
\end{aligned}
\] \& \(31 / 64\)
\(1 / 2\) \& \begin{tabular}{l}
.484375 .489583 .494792 \\
.5000
\end{tabular} \& \[
\begin{aligned}
\& 513 / 16 \\
\& 57 / 8 \\
\& 515 / 16 \\
\& 6
\end{aligned}
\] \& 47/64

$3 / 4$ \& \[
$$
\begin{aligned}
& .734375 \\
& .739583 \\
& .744792
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
813 / 16 \\
87 / 8 \\
815 / 10
\end{array}
$$

\] \& 63/64 \& \[

$$
\begin{array}{r}
.984375 \\
.989583 \\
.994792
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 1113 / 16 \\
& 117 / 8 \\
& 11^{15 / 16}
\end{aligned}
$$\right.
\]

\hline
\end{tabular}

Table A-7
VARIOUS POWERS OF PIPE DIAMETERS

Pipe Diameter		$\mathrm{D}^{1 / 3}$	$\mathrm{D}^{2 / 3}$	D4/3	$\mathrm{D}^{8 / 3}$	D ${ }^{1 / 2}$	$\mathrm{D}^{16 / 3}$	D^{4}
In.	Ft. (D)							
6	0.50	0.794	0.630	0.397	0.157	0.177	0.025	0.063
8	0.67	0.874	0.763	0.582	0.339	0.363	0.115	0.198
9	0.75	0.909	0.825	0.681	0.464	0.487	0.216	0.316
10	0.83	0.941	0.886	0.784	0.615	0.634	0.378	0.482
12	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
15	1.25	1.077	1.160	1.347	1.813	1.747	3.287	2.441
16	1.33	1.101	1.211	1.468	2.154	2.053	4.638	3.160
18	1.50	1.145	1.310	1.717	2.948	2.756	8.693	5.063
21	1.75	1.205	1.452	2.109	4.447	4.051	19.78	9.379
24	2.00	1.260	1.587	2.520	6.35	5.657	40.32	16.00
27	2.25	1.310	1.717	2.948	8.69	7.594	75.56	25.63
30	2.50	1.357	1.842	3.393	11.51	9.882	132.5	39.06
33	2.75	1.401	1.963	3.853	14.84	12.54	220.3	57.19
36	3.00	1.442	2.080	4.327	18.72	15.59	350.4	81.0
39	3.25	1.481	2.194	4.814	23.17	19.04	537.1	111.6
42	3.50	1.518	2.305	5.314	28.24	22.92	797.5	150.1
45	3.75	1.554	2.414	5.826	33.94	27.23	1152.	197.8
48	4.0	1.587	2.520	6.35	40.32	32.00	1626.	256.0
54	4.5	1.651	2.726	7.43	55.20	42.96	3047.	410.1
60	5.0	1.710	2.924	8.55	73.10	55.90	5344.	625.0
66	5.5	1.765	3.116	9.71	94.25	70.94	8883.	915.1
72	6.0	1.817	3.302	10.90	118.8	88.2	14130	1296
78	6.5	1.866	3.483	12.13	147.1	107.7	21654	1785
84	7.0	1.913	3.659	13.39	179.3	129.6	32148	2401
90	7.5	1.957	3.832	14.68	215.5	154.0	46451	3164
96	8.0	2.000	4.00	16.00	256	181.0	65536	4096
102	8.5	2.041	4.17	17.35	301	210.6	90552	5220
108	9.0	2.080	4.33	18.72	350	243.0	122827	6561
114	9.5	2.118	4.49	20.12	405	278.2	163879	8145
120	10.0	2.154	4.64	21.54	464	316	215443	10000
132	11.0	2.224	4.95	24.46	598	401	358173	14641
144	12.0	2.289	5.24	27.47	755	499	569680	20736
156	13.0	2.351	5.53	30.57	934	609	873031	28561
168	14.0	2.410	5.81	33.74	1140	733	1296200	38416
180	15.0	2.466	6.08	36.99	1370	871	1872800	50625

Table A-8

AREAS OF CIRCULAR SECTIONS (Square Feet)

Diameter		0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
Inches	Feet and inches								
0	0.0		. 0001	. 0003	. 0008	. 0014	. 0021	. 0031	. 0042
1	$0-1$. 0055	. 0069	. 0085	. 0103	. 0123	. 0144	. 0167	. 0192
2	0-2	. 0218	. 0246	. 0276	. 0308	. 0341	. 0376	. 0413	. 0451
3	0-3	. 0491	. 0533	. 0576	. 0621	. 0668	. 0717	. 0767	. 0819
4	0.4	. 0873	. 0928	. 0985	. 1044	. 1104	. 1167	1231	. 1296
5	0.5	. 1364	1433	. 1503	. 1576	. 1650	. 1726	. 1803	. 1883
6	0.6	. 1963	. 2046	. 2131	. 2217	. 2304	. 2394	. 2485	. 2578
7	0.7	. 2673	. 2769	. 2867	. 2967	. 3068	. 3171	. 3276	. 3382
8	0-8	. 3491	. 3601	. 3712	. 3826	. 3941	. 4057	. 4176	. 4296
9	$0-9$. 4418	. 4541	. 4667	. 4794	4922	. 5053	. 5185	. 5319
10	0-10	. 5454	. 5591	. 5730	. 5871	. 6013	. 6157	. 6303	. 6450
11	0.11	. 6600	. 6750	. 6903	. 7057	. 7213	. 7371	. 7530	. 7691
12	1.0	. 7854	. 8018	. 8185	. 8353	. 8522	. 8693	. 8866	. 9041
13	1-1	. 9218	. 9396	. 9575	. 9757	. 9940	1.013	1.031	1.050
14	1-2	1.069	1.088	1.108	1.127	1.147	1.167	1.187	1.207
15	$1-3$	1.227	1.248	1.268	1.289	1.310	1.332	1.353	1.375
16	1-4	1.396	1.418	1.440	1.462	1.485	1.507	1.530	1.553
17	$1-5$	1.576	1.600	1.623	1.647	1.670	1.694	1.718	1.743
18	1.6	1.767	1.792	1.817	1.842	1.867	1.892	1.917	1.943
19	1.7	1.969	1.995	2.021	2.047	2.074	2.101	2.127	2.154
20	1.8	2.182	2.209	2.237	2.264	2.292	2.320	2.348	2.377
21	1.9	2.405	2.434	2.463	2.492	2.521	2.551	2.580	2.610
22	1.10	2.640	2.670	2.700	2.731	2.761	2.792	2.823	2.854
23	1.11	2.885	2.917	2.948	2.980	3.012	3.044	3.076	3.109
24	2.0	3.142	3.174	3.207	3.241	3.274	3.307	3.341	3.375
25	2-1	3.409	3.443	3.477	3.512	3.547	3.581	3.616	3.652
26	2-2	3.687	3.723	3.758	3.794	3.830	3.866	3.903	3.939
27	2.3	3.976	4.013	4.050	4.087	4.125	4.162	4.200	4.238
28	2.4	4.276	4.314	4.353	4.391	4.430	4.469	4.508	4.547
29	2.5	4.587	4.627	4.666	4.706	4.746	4.787	4.827	4.868
30	2.6	4.909	4.950	4.991	5.032	5.074	5.115	5.157	5.199
31	2.7	5.241	5.284	5.326	5.369	5.412	5.455	5.498	5.541
32	2.8	5.585	5.629	5.673	5.717	5.761	5.805	5.850	5.895
33	2.9	5.940	5.985	6.030	6.075	6.121	6.167	6.213	6.259
34	2-10	6.305	6.351	6.398	6.445	6.492	6.539	6.586	6.634
35	2.11	6.681	6.729	6.777	6.825	6.874	6.922	6.971	7.020
36	3.0	7.069	7.118	7.167	7.217	7.266	7.316	7.366	7.416
37	3.1	7.467	7.517	7.568	7.619	7.670	7.721	7.773	7.824
38	$3-2$	7.876	7.928	7.980	8.032	8.084	8.137	8.190	8.243
39	3.3	8.296	8.349	8.402	8.456	8.510	8.564	8.618	8.672
40	3-4	8.727	8.781	8.836	8.891	8.946	9.001	9.057	9.113
41	3-5	9.168	9.224	9.281	9.337	9.393	9.450	9.507	9.564
42	3 -6	9.621	9.678	9.736	9.794	9.852	9.910	9.968	10.03
43	3.7	10.08	10.14	10.20	10.26	10.32	10.38	10.44	10.50
44	3-8	10.56	10.62	10.68	10.74	10.80	10.86	10.92	10.98
45	3.9	11.04	11.11	11.17	11.23	11.29	11.35	11.42	11.48
46	3.10	11.54	11.60	11.67	11.73	11.79	11.86	11.92	11.98
47	3-11	12.05	12.11	12.18	12.24	12.31	12.37	12.44	12.50
48	4.0	12.57	12.63	12.70	12.76	12.83	12.90	12.96	13.03
49	4.1	13	13.16	13	13.30	13.36	13.43	13.50	13.57

Table A-9

AREAS OF CIRCULAR SEGMENTS

Table A-10

AREA, WETTED PERIMETER AND HYDRAULIC RADIUS OF PARTIALLY FILLED CIRCULAR PIPE

$\frac{d}{D}$	$\frac{\text { area }}{D^{2}}$	$\frac{\text { wet. per }}{\text { D }}$	$\frac{\text { hyd. rad. }}{\text { D }}$	$\frac{d}{D}$	$\frac{\text { area }}{D^{2}}$	$\frac{\text { wet. per. }}{\text { D }}$	$\frac{\text { hyd. } \mathrm{rad}}{\mathrm{D}}$
0.01	0.0013	0.2003	0.0066	0.51	0.4027	1.5908	0.2531
0.02	0.0037	0.2838	0.0132	0.52	0.4127	1.6108	0.2561
0.03	0.0069	0.3482	0.0197	0.53	0.4227	1.6308	0.2591
0.04	0.0105	0.4027	0.0262	0.54	0.4327	1.6509	0.2620
0.05	0.0147	0.4510	0.0326	0.55	0.4426	1.6710	0.2649
0.06	0.0192	0.4949	0.0389	0.56	0.4526	1.6911	0.2676
0.07	0.0242	0.5355	0.0451	0.57	0.4625	1.7113	0.2703
0.08	0.0294	0.5735	0.0513	0.58	0.4723	1.7315	0.2728
0.09	0.0350	0.6094	0.0574	0.59	0.4822	1.7518	0.2753
0:10	0.0409	0.5435 .	$0: 0635$	0.60	0.4920	1.7722	0.2776
0.11	0.0470	0.6761	0.0695	0.61	0.5018	1.7926	0.2799
0.12	0.0534	0.7075	0.0754	0.62	0.5115	1.8132	0.2821
0.13	0.0600	0.7377	0.0813	0.63	0.5212	1.8338	0.2842
0.14	0.0668	0.7670	0.0871	0.64	0.5308	1.8546	0.2862
0.15	0.0739	0.7954	0.0929	0.65	0.5404	1.8755	0.2881
0.16	0.0811	0.8230	0.0986	0.66	0.5499	1.8965	0.2899
0.17	0.0885	0.8500	0.1042	0.67	0.5594	1.9177	0.2917
0.18	0.0961	0.8763	0.1097	0.68	0.5687	1.9391	0.2933
0.19	0.1039	0.9020	0.1152	0.69	0.5780	1.9606	0.2948
0.20	0.1118	0.9273	0.1206	0.70	0.5872	1.9823	0.2962
0.21	0.1199	0.9521	0.1259	0.71	0.5964	2.0042	0.2975
0.22	0.1281	0.9764	0.1312	0.72	0.6054	2.0264	0.2987
0.23	0.1365	1.0003	0.1364	0.73	0.6143	2.0488	0.2998
0.24	0.1449	1.0239	0.1416	0.74	0.6231	2.0714	0.3008
0.25	0.1535	1.0472	0.1466	0.75	0.6318	2.0944	0.3017
0.26	0.1623	1.0701	0.1516	0.76	0.6404	2.1176	0.3025
0.27	0.1711	1.0928	0.1566	0.77	0.6489	2.1412	0.3032
0.28	0.1800	1.1152	0.1614	0.78	0.6573	2.1652	0.3037
0.29	0.1890	1.1373	0.1662	0.79	0.6655	2.1895	0.3040
0.30	0.1982	1.1593	0.1709	0.80	0.6736	2.2143	0.3042
0.31	0.2074	1.1810	0.1755	0.81	0.6815	2.2395	0.3044
0.32	0.2167	1.2025	0.1801	0.82	0.6893	2.2653	0.3043
0.33	0.2260	1.2239	0.1848	0.83	0.6969	2.2916	0.3041
0.34	0.2355	1.2451	0.1891	0.84	0.7043	2.3186	0.3038
0.35	0.2450	1.2661	0.1935	0.85	0.7115	2.3462	0.3033
0.36	0.2546	1.2870	0.1978	0.86	0.7186	2.3746	0.3026
0.37	0.2642	1.3078	0.2020	0.87	0.7254	2.4038	0.3017
0.38	0.2739	1.3284	0.2061	0.88	0.7320	2.4341	0.3008
0.39	0.2836	1.3490	0.2102	0.89	0.7384	2.4655	0.2996
0.40	0.2934	1.3694	0.2142	0.90	0.7445	2.4981	0.2980
0.41	0.3032	1.3898	0.2181	0.91	0.7504	2.5322	0.2963
0.42	0.3130	1.4101	0.2220	0.92	0.7560	2.5681	0.2944
0.43	0.3229	1.4303	0.2257	0.93	0.7612	2.6061	0.2922
0.44	0.3328	1.4505	0.2294	0.94	0.7662	2.6467	0.2896
0.45	0.3428	1.4706	0.2331	0.95	0.7707	2.6906	0.2864
0.46	0.3527	1.4907	0.2366	0.96	0.7749	2.7389	0.2830
0.47	0.3627	1.5108	0.2400	0.97	0.7785	2.7934	0.2787
0.48	0.3727	1.5308	0.2434	0.98	0.7816	2.8578	0.2735
0.49	0.3827	1.5508	0.2467	0.99	0.7841	2.9412	0.2665
0.50	0.3927	1.5708	0.2500	1.00	0.7854	3.1416	0.2500

Table A-11

HEADWATER DEPTH FOR CIRCULAR PIPE CULVERTS WITH INLET CONTROL END SECTION WITH CLOSED TAPER

Table A-12

TRIGONOMETRIC FORMULAS

COURTESY OF AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Table A-13

PROPERTIES OF THE CIRCLE

CIRCULAR SEGMENT

$r=$ radius of circle $\quad x=$ chord $\quad b=$ rise

Area of Segment nop $=$ Area of Sector ncpo - Area of triangle ncp $=\frac{\text { (Length of arc nop } \times r)-x(r-b)}{2}$
Area of Segment nsp $=$ Area of Circle - Area of Segment nop

VALUES FOR FUNCTIONS OF π

$\pi=3.14159265359, \quad \log =0.4971499$
$\pi^{2}=9.8696044, \log =0.9942997 \quad \frac{1}{\pi}=0.3183099, \log =\overline{1} .5028501 \quad \sqrt{\frac{1}{\pi}}=0.5641896, \log =\overline{1} .7514251$
$\pi^{2}=31.0062767, \log =1.4914496 \quad \frac{1}{\boldsymbol{\pi}^{2}}=\mathbf{0 . 1 0 1 3 2 1 2 , \operatorname { l o g } = \overline { 1 } . 0 0 5 7 0 0 3} \frac{\pi}{180}=0.0174533, \log =\overline{2} .2418774$
$\sqrt{\pi}=1.7724539, \log =0.2485749 \quad \frac{1}{\pi^{8}}=0.0322515, \log =\overline{2} .5085500 \quad \frac{180}{\pi}=57.2957795, \log =1.7581226$
Note: Logs of fractions such as $\overline{1}: 5028501$ and $\overline{2} .5085500$ may also be written 9.5028501 - 10 and 8.5085500 - 10 respectively.

Table A-14a
PROPERTIES OF GEOMETRIC SECTIONS

SOUARE Axis of moments through center	$\begin{aligned} & A=d z \\ & c=\frac{d}{2} \end{aligned}$
	$\begin{aligned} & 1=\frac{d^{4}}{12} \\ & s=\frac{d^{3}}{6} \\ & r=\frac{d}{\sqrt{12}}=.288676 d \\ & z=\frac{d^{3}}{4} \end{aligned}$
SQUARE Axis of moments on base	$\begin{aligned} & A=d^{2} \\ & C=d \\ & 1=\frac{d^{4}}{3} \\ & S=\frac{d^{2}}{3} \\ & r=\frac{d}{\sqrt{3}}-.577350 d \end{aligned}$
SQUARE Axis of moments on diagonal	$\begin{aligned} & A=d^{2} \\ & c=\frac{d}{\sqrt{2}}=.707107 d \\ & 1=\frac{d^{4}}{12} \\ & S=\frac{d^{3}}{6 \sqrt{2}}=.117851 d^{z} \\ & r=\frac{d}{\sqrt{12}}=.288675 d \\ & z=\frac{2 c^{3}}{3}-\frac{d^{3}}{3 \sqrt{2}}-.235702 d^{3} \end{aligned}$
RECTANGLE Axis of moments through center	$A=b d$ $c=\frac{d}{2}$ $1=\frac{b d^{2}}{12}$ $S=\frac{b d^{z}}{6}$ $r=\frac{d}{\sqrt{12}}=.288675 d$ $2-\frac{b d^{2}}{4}$

Table A-14b
PROPERTIES OF GEOMETRIC SECTIONS

Table A-14c
PROPERTIES OF GEOMETRIC SECTIONS

COURTESY OF AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Table A-14d

PROPERTIES OF GEOMETRIC SECTIONS

Table A-14e

PROPERTIES OF GEOMETRIC SECTIONS

Table A-14f

PROPERTIES OF GEOMETRIC SECTIONS

* QUARTER ELLIPSE

$A=\frac{1}{4} \pi a b$
$m=\frac{4 a}{3 \pi}$
$n=\frac{4 b}{3 \pi}$
$I_{1}=a^{3} b\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right)$
$I_{2}=a b^{3}\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right)$
$I_{3}=\frac{1}{16} \pi a^{3} b$
$I_{4}=\frac{1}{16} \pi a^{3}$
* ELLIPTIC COMPLEMENT

$$
\begin{aligned}
& A=a b\left(1-\frac{\pi}{4}\right) \\
& m=\frac{a}{6\left(1-\frac{\pi}{4}\right)} \\
& n=\frac{b}{6\left(1-\frac{\pi}{4}\right)} \\
& I_{1}=a^{3} b\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right) \\
& I_{2}=a b^{3}\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right)
\end{aligned}
$$

* To obtain properties of half circle, quarter circle and circular complement substitute $a=b=R$.

COURTESY OF AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Table A-15

PROPERTIES OF GEOMETRIC SECTIONS AND STRUCTURAL SHAPES

REGULAR POLYGON Axis of moments through center	$\begin{aligned} n & =\text { Number of sides } \\ \phi & =\frac{180^{\circ}}{n} \\ a & =2 \sqrt{R^{2}-R_{1}{ }^{2}} \\ R & =\frac{a}{2 \sin \phi} \\ R_{1} & =\frac{a}{2 \tan \phi} \\ A & =\frac{1}{4} n a^{2} \cot \phi=\frac{1}{2} n R^{2} \sin 2 \phi=n R_{1}^{2} \tan \phi \\ I_{1}=I_{2} & =\frac{A\left(6 R^{2}-a^{2}\right)}{24}=\frac{A\left(12 R_{1}{ }^{2}+a^{2}\right)}{48} \\ r_{1}=r_{2} & =\sqrt{\frac{6 R^{2}-a^{2}}{24}=\sqrt{\frac{12 R_{1} 2}{48}+a^{2}}} \end{aligned}$
ANGLE Axis of moments through center of gravity $Z-Z$ is axis of minimum I	$\begin{aligned} \tan 2 \theta & =\frac{2 K}{I_{Y}-I_{X}} \\ A & =t(b+c) x=\frac{b^{2}+c t}{2(b+c)} y=\frac{d^{2}+a t}{2(b+c)} \\ K & =\text { Product of Inertia about } X-X \& Y-Y \\ & =\mp \frac{a b c d t}{4(b+c)} \\ I_{X} & =\frac{1}{3}\left(t(d-y)^{3}+b y^{3}-a(y-t)^{3}\right) \\ I_{Y} & =\frac{1}{3}\left(t(b-x)^{3}+d x^{3}-c(x-t)^{3}\right) \\ I_{Z} & =I_{X} \sin ^{2} \theta+I_{Y} \cos ^{2} \theta+K \sin 2 \theta \\ I_{W} & =I_{X} \cos ^{2} \theta+I_{Y} \sin ^{2} \theta-K \sin 2 \theta \end{aligned}$ K is negative when heel of angle, with respect to c. g.. is in 1 st or 3rd quadrant, positive when in 2 nd or 4 th quadrant.
BEAMS AND CHANNELS Transverse force oblique through center of gravity	$\begin{aligned} & I_{z}=I_{x} \sin ^{2} \phi+I_{y} \cos ^{2} \phi \\ & I_{4}=I_{x} \cos ^{2} \phi+I_{y} \sin ^{2} \phi \\ & f_{b}=M\left(\frac{y}{I_{x}} \sin \phi+\frac{x}{I_{y}} \cos \phi\right) \end{aligned}$ where M is Dending moment due to force F.

FOUR PLACE LOGARITHM TABLES

No.	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5498	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7315
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996

Table A-17a
FREQUENTLY USED CONVERSION FACTORS

TO CONVERT	WTO	MULTIPLY BY	IO CONVERT	INTO	MULTPLY BY
A					
acres	sq feet	43,560.0	cubic meters	cu incnes	61,023.0
acres	sq meters	4,047	cubic meters	cu yards	1.308
acres	sq miles	1.562×10^{-3}	cubic meters	gallons (U.S. liq.)	264.2
acres	sq yards	4,840.	cubic meters	liters	1,000.0
acre-feet	cufeet	43,560.0	cubic meters	pints (U.S. liq.)	2,113.0
acre-feet	galions	3.259×10^{5}	cubic meters	quarts (U.S. liq.)	1,057.
atmospheres	cms of mercury	76.0	cubic yards	cucms	7.646×10^{5}
atmospheres	ft of water (at $4^{\circ} \mathrm{C}$)	33.90	cubic yards	cu feet	27.0
atmospheres	in. of mercury (at $0^{\circ} \mathrm{C}$)	29.92	cubic yards	cu inches	46,656.0
atmospheres	$\mathrm{kgs} / \mathrm{sq} \mathrm{cm}$	1.0333	cubic yards	cu meters	0.7646
atmospheres	kgs/sq meter	10,332.	cubic yards	gallons (U.S. liq.)	202.0
atmospheres	pounds/sq in	14.70	cubic yards	liters	764.6
	C		cubic yards	pints (U.S. liq.)	1,615.9
	C		cubic yards	quarts (U.S. liq.)	807.9
Centigrade	Fahrenheit	$\left(C^{\circ} \times 9 / 5\right)+32$	cubic yards/min	cubic ft/sec	0.45
centiliters	liters	0.01	cubic yards/min	gallons/sec	3.367
centimeters	feet	3.281×10^{-2}	cubic yards/min	liters/sec	12.74
centimeters	inches	0.3937	D		
centimeters	kilometers	10^{-5}			
centimeters	meters	0.01	days	seconds	86,400.0
centimeters	miles	6.214×10^{-6}	decigrams	grams	
centimeters	millimeters	10.0	deciliters	liters	0.1
centimeters	yards	1.094×10^{-2}	decimeters	meters	0.1
centimeters of mercury	atmospheres	0.01316	degrees (angle)	quadrants	0.01111
centimeters of mercury	feet of water	0.4461	degrees (angle)	radians	0.01745
centimeters of mercury	kgs/sq meter	136.0 27.85	degrees (angle)	seconds	3,600.0
centimeters of mercury	pounds/sq ft	27.85 0.1934	dekagrams	${ }^{\text {grams }}$	10.0
centimeters/sec	feet/min	1.1969	dekaliters	liters meters	10.0 10.0
centimeters/sec	feet/sec	0.03281	kameters	meters	10.0
centimeters/sec	kilometers/hr	0.036	F		
centimeters/sec	meters/min	0.6	feet	centimeters	$\begin{aligned} & 30.48 \\ & 3.048 \times 10^{-4} \\ & 0.3048 \end{aligned}$
centimeters/sec	miles/hr	0.02237			
centimeters/sec	miles/min	3.728×10^{-4}	feet	kilometers	
centimeters $/ \mathrm{sec} / \mathrm{sec}$	feet/sec/sec	0.03281	feet	meters	
centimeters $/ \mathrm{sec} / \mathrm{sec}$	$\mathrm{kms} / \mathrm{hr} / \mathrm{sec}$	0.036	feet	miles (naut.)	$\begin{aligned} & 1.645 \times 10^{-4} \\ & 1.894 \times 10^{-4} \end{aligned}$
centimeters/sec $/ \mathrm{sec}$	meters/sec/sec	0.01	feet	millis (stat)	
centimeters/ $/ \mathrm{sec} / \mathrm{sec}$	miles/hr/sec	0.02237	feet	millimeters	304.8 1.2×10^{4}
Chain	Inches	792.00	feet	mils	$\begin{aligned} & 1.2 \times 10^{4} \\ & 0.02950 \end{aligned}$
Chain	meters	20.12	feet of water	atmospheres	0.02950 0.8826
Chains (suveyors'			feet of water feet of water	in. of mercury $\mathrm{kgs} / \mathrm{sq} \mathrm{cm}$	$\begin{aligned} & 0.8826 \\ & 0.03048 \end{aligned}$
or Gunter's)	yards	22.00		kgs/sq cm	
Circumference	Radians	6.283	feet of water	kg $/ \mathrm{sq}$ meter	304.8
cubic centimeters	cu feet	3.531×10^{-5}		pounds/sq ft	62.43
cubic centimeters	cu inches	0.06102		pounds/sq in	0.4335
cubic centimeters	cu meters	10^{-6}	feet of water feet/min	cms/sec	$\begin{aligned} & 0.5080 \\ & 0.01667 \end{aligned}$
cubic centimeters	cu yards	1.308×10^{-6}	feet/min	feet/sec	
cubic centineters	gallons (U.S. liq.)	2.642×10^{-4}	feet/min feet/min	$\mathrm{kms} / \mathrm{hr}$	0.01667 0.01829
cubic centimeters	fiters	0.001		meters/min	0.3048
cubic centimeters	pints (U.S. liq.)	2.113×10^{-3}	feet/min feet/min	miles/hr	0.01136
cubic centimeters	quarts (U.S. liq.)	1.057×10^{-3}	feet/sec feet/sec	$\mathrm{cms} / \mathrm{sec}$	30.48
cubic feet	cucms	28,320.0		$\mathrm{kms} / \mathrm{hr}$	1.097
cubic feet	cu inches	1.728.0	feet/secfeet/sec	knotsmeters/min	0.5921
cubic feet	cu meters	0.02832			18.29
cubic feet	cu yards	0.03704	feet $/ \mathrm{sec}$ feet/sec	meters $/ \mathrm{min}$ miles $/ \mathrm{hr}$	0.6818
cubic feet	gallons (U.S. liq.)	7.48052	feet/sec feet/sec	miles/hr miles/min	0.01136
cubic feet	liters	28.32	feet/sec/sec	cms/sec/sec	30.48
cubic feet	pints (U.S. liq.)	59.84	feet $/ \mathrm{sec} / \mathrm{sec}$feet $/ \mathrm{sec} / \mathrm{sec}$	$\mathrm{kms} / \mathrm{hr} / \mathrm{sec}$meters $/ \mathrm{sec} / \mathrm{sec}$	1.097
cubic feet	quarts (U.S. liq.)	29.92			0.3048
cubic feet/min	cu cms/sec	472.0	feet/sec/sec feet/sec/sec	miles (U.S.)	0.125
cubic feet/min	gallons/sec	0.1247	furlongsfuriongs		
cubic feet/min	liters/sec	0.4720		feet	660.0
cubic feet/min	pounds of water/min	62.43	furiongs	G	
cubic feet/sec	gallons/min	448.831			
cubic inches	cucms	16.39	gallons	cu cms	3,785.0
cubic inches	cu feet	5.787×10^{-4}	gallons	cu feet	0.1337
cubic inches	cu meters	1.639×10^{-5}	gallons	cu inches	231.0
cubic inches	cu yards	2.143×10^{-5}	gallons	cu meters	3.785×10^{-3}
cubic inches	gallons	4.329×10^{-3}	gallons	cu yards	4.951×10^{-3}
cubic inches	liters	0.01639	gallons	liters	3.785
cubic inches	pints (U.S. liq.)	0.03463	gallons (liq. Br. Imp.)	gallons (U. S. liq.)	1.200950.83267
cubic inches	quarts (U. S. Iiq.)	0.01732	gallons (U.S.) gallons of water	gallons (Imp.) pounds of water	
cubic meters	cucms	10^{6}			$\begin{aligned} & 0.83267 \\ & 8.3453 \\ & 2.228 \times 10^{-3} \end{aligned}$
cubic meters	cu feet	35.31	gallons/min	cu ft/sec	

Table A-17b

TO CONVERT	INTO	multiply by	TO CONVERT	INTO	multipir by
gallons/min	cuft/hr	8.0208	kilometers/hr	feet/sec	0.9113
gallons/day	$\mathrm{cuft} / \mathrm{sec}$	1.5472×10^{-6}	kilometers/hr	knots	0.5396
grains (troy)	grams	0.06480	kilometers/hr	meters/min	16.67
grains (troy)	ounces (avdp)	2.0833×10^{-3}	kilometers/hr	miles/hr	0.6214
grams	grains	15.43	knots	feet/hr	6,080
grams	kilograms	0.001	knots	kilometers/hr	1.8532
grams	milligrams	1,000.	knots	nautical miles/hr	1.0
grams	ounces (avdp)	0.03527	knots	statute miles/hr	1.151
grams	ounces (troy)	0.03215	knots	yards/hr	2,027.
grams	pounds	2.205×10^{-3}	knots	feet/sec	1.689
grams/cm	pounds/inch	5.600×10^{-3}			
grams/cu cm	pounds/cu ft	62.43		L	
grams/cu cm	pounds/cu in	0.03613	links (engineer's)	inches	120
grams/liter	pounds/cu ft	0.062427	links (surveyor's)	inches	7.92
grams/sq cm	pounds/sq ft	2.0481	liters	busheis (U. S. dry)	0.02838
	H		liters	cucm	1,000.0
	H		liters	cu feet	0.03531
hectograms	grams	100.0	liters	cu inches	61.02
hectoliters	liters	100.0	liters	cu meters	0.001
hectometers	meters	100.0	liters	cu yards	1.308×10^{-3}
hours	days	4.167×10^{-2}	liters	gallons (U.S. liq.)	0.2642
hours	weeks	5.952×10^{-3}	liters	pints (U.S. liq.)	2.113
			liters	quarts (U.S. liq.)	1.057
	I		liters/min	cu ft/sec	5.886×10^{-4}
inches	centimeters	2.540	liters/min	$\mathrm{gals} / \mathrm{sec}$	4.403×10^{-3}
inches	meters	2.540×10^{-2}			
inches	miles	1.578×10^{-5}		M	
inches	millimeters	25.40	meters	centimeters	100.0
inches	mils	1,000.0	meters	feet	3.281
inches	yards	2.778×10^{-2}	meters	inches	39.37
inches of mercury	atmospheres	0.03342	meters	kilometers	0.001
inches of mercury	feet af water	1.133	meters	miles (naut.)	5.396×10^{-4}
inches of mercury	$\mathrm{kgs} / \mathrm{sqcm}$	0.03453	meters	miles (stat.)	6.214×10^{-4}
inches of mercury	$\mathrm{kgs} / \mathrm{sq}$ meter	345.3	meters	millimeters	1.000 .0
inches of mercury	pounds/sq ft	70.73	meters	yards	1.094
inches of mercury inches of water (at $4^{\circ} \mathrm{C}$)	pounds/sq in atmospheres	0.4912 2.458×10^{-3}	meters/min	$\mathrm{cms} / \mathrm{sec}$	1.667
inches of water (at $4^{\circ} \mathrm{C}$)	inches of mercury	0.07355	meters/min	feet/min	3.281
inches of water (at $4^{\circ} \mathrm{C}$)	$\mathrm{kgs} / \mathrm{sq} \mathrm{cm}$	2.540×10^{-3}	meters/min meters/min	feet/sec knots	0.05468 0.03238
inches of water (at $4^{\circ} \mathrm{C}$)	ounces/sq in	0.5781	meters/min	miles/hr	0.03728
inches of water (at $4^{\circ} \mathrm{C}$)	pounds/sq ft	5.204	meters/sec	feet/min	196.8
inches of water (at $4^{\circ} \mathrm{C}$)	pounds/sq in	0.03613	meters/sec	feet/sec	3.281
	K		meters/sec	kilometers/hr	3.6
	K		meters/sec	kilometers/min	0.06
kilograms	dynes	980,665.	meters/sec	miles/hr	2.237
kilograms	grams	1,000.0	meters/sec	miles/min	0.03728
kilograms	pounds	2.205	micrograms	grams	10^{-}
kilograms	tons (long)	9.842×10^{-4}	microliters	liters	10°
kilograms	tons (short)	1.102×10^{-3}	microns	meters	1×10^{-6}
kilograms/cu meter	grams/cu cm	0.001	miles (naut.)	feet	6,080.27
kilograms/cu meter	pounds/cu ft	0.06243	miles (naut.)	kilometers	1.853
kilograms/cu meter	pounds/cu in.	3.613×10^{-5}	miles (naut.)	meters	1,853.
kilograms/cu meter	pounds/mil - foot	3.405×10^{-10}	miles (naut.)	miles (statute)	1.1516
kilograms/meter	pounds/ft	0.6720	miles (naut)	yards	2,027.
kilograms/sq cm	atmospheres	0.9678	miles (statute)	centimeters	1.609×10^{5}
kilograms/sq cm	feet of water	32.81	miles (statute)	feet	5,280
kilograms/sq cm	inches of mercury	28.96	miles (statute)	inches	6.336×10^{4}
kilograms/sq cm	pounds/sq ft	2.048.	miles (statute)	kilometers	1.609
kilograms/sq cm	pounds/sq in	14.22	miles (statute)	meters	1,609.
kilograms/sq meter	atmospheres	9.678×10^{-5}	miles (statute)	miles (naut.)	0.8684
kilograms/sq meter	feet of water	3.281×10^{-5}	miles (statute)	yards	1,760.
kilograms/sq meter	inches of mercury	$2.896 \times 10^{-}$	miles/hr	cms/sec	44.70
kilograms/sq meter	pounds/sq ft	0.2048	miles/hr	feet/min	88.
kilograms/sq meter	pounds/sq in	1.422×10^{-3}	miles/hr	feet/sec	1.467
kilograms/sq mm	$\mathrm{kg} / \mathrm{sq}$ meter	10^{6}	miles/hr	$\mathrm{kms} / \mathrm{hr}$	1.609
kiloliters	1 liters	$1,000.0$	miles/hr	kms/min	0.02682
kilometers	centimeters	10^{5}	miles/hr	knots	0.8684
kilometers	feet	3,281.	miles/hr	meters/min	26.82
kilometers	inches	3.937×10^{4}	miles/hr	miles/min	0.1667
kilometers	meters	1,000.0	miles/min	$\mathrm{cms} / \mathrm{sec}$	2.682.
kilometers	miles	0.6214	miles/min	feet/sec	88.
kilometers	millimeters	10°	miles/min	$\mathrm{kms} / \mathrm{min}$	1.609
kilometers	yards	1,094.	miles/min	knots/min	0.8684
kilometers/hr	cms/sec	27.78	miles/min	miles/hr	60.0
kilometers/hr	feet/min	54.68	mil-feet	cu inches	9.425×10^{-6}

FREQUENTLY USED CONVERSION FACTORS

IO CONVERT

INTO
MULTIPLY BY
to convert
INTO
multiply by

milliers	kilograms	1,000.	pounds/sq ft	atmospheres	4.725×10^{-4}
Millimicrons	meters	1×10^{-9}	pounds/sq ft	feet of water	0.01602
milligrams	grams	0.001	pounds/sq ft	inches of mercury	0.01414
millititers	liters	0.001	pounds/sq ft	kgs/sq meter	4.882
millimeters	centimeters	0.1	pounds/sq in.	atmospheres	0.06804
millimeters	feet	3.281×10^{-3}	pounds/sq in.	feet of water	2.307
miltimeters	inches	0.03937	pounds/sq in.	inches of mercury	2.036
millimeters	kilometers	10^{-8}	pounds/sq in.	kgs/sq meter	703.1
millimeters	meters	0.001	pounds/sq in	pounds/sq ft	144.0
millimeters	miles	6.214×10^{-7}			
millimeters	yards	1.094×10^{-3}		a	
million gals/day	cu ft/sec	1.54723	quadrants (angle)	degrees	90.0
mils	centimeters	2.540×10^{-3}	quadrants (angle)	minutes	5,400.0
mils	feet	8.333×10^{-5}	quadrants (angle)	radians	1.571
mils	inches	0.001	quadrants (angle)	seconds	3.24×10^{5}
mils	kilometers	2.540×10^{-8}			
mils	yards	2.778×10^{-5}		R	
minutes (angles)	degrees	0.01667			
myriagrams	kilograms	10.0	radians	degrees minutes	57.30 3,438.
myriameters	kilometers	10.0	radians radians	minutes quadrants	$\begin{aligned} & 3,438 . \\ & 0.6366 \end{aligned}$
myriawatts	kilowatts	10.0	radians radians	quadrants seconds	$\begin{aligned} & 0.6366 \\ & 2.063 \times 10^{5} \end{aligned}$
	0		rods	chain (Gunters)	. 25
			rods	meters	5.029
ounces	drams	16.0	rods (Surveyors' meas.)	yards	5.5
ounces	grains	437.5	rods	feet	16.5
ounces	grams	28.349527			
ounces	pounds	0.0625		S	
ounces	ounces (troy)	0.9115	square centimeters	sq feet	1.076×10^{-3}
ounces	tons (long)	2.790×10^{-5}	square centimeters	sqinches	0.1550
ounces	tons (metric)	2.835×10^{-5}	square centimeters	sq meters	0.0001
ounces (fluid)	cu inches	1.805	square centimeters	sq miles	3.861×10^{-11}
ounces (fluid)	liters	0.02957	square centimeters	sq millimeters	100.0
ounces (troy)	grains	480.0	square centimeters	sq yards	1.196×10^{-4}
ounces (troy)	grams	31.103481	square feet	acres	2.296×10^{-5}
ounces (troy)	ounces (avdp.)	1.09714	square feet	sq cms	929.0
ounces (troy)	pounds (troy)	0.08333	square feet	sq inches	144.0
ounces/sq in.	pounds/sq in.	0.0625	square feat	sq meters	0.09290
	P		square feet	sq miles	3.587×10^{-8}
			square feet	sq millimeters	9.290×10^{4}
pints (dry)	cu inches	33.60	square feet	sq yards	0.1111
pints (liq.)	cu cms	473.2	square inches	sq cms	6.452
pints (liq.)	cu feet	0.01671	square inches	sq feet	6.944×10^{-3}
pints (liq.)	cu inches	28.87	square inches	sq millimeters	645.2
pints (liq.)	cu meters	4.732×10^{-4}	square inches	sq yards	7.716×10^{-4}
pints (liq.)	cu yards	6.189×10^{-4}	square kilometers	acres	247.1
pints (liq.)	gallons	0.125	square kilometers	sq cms	10^{10}
pints (liq.)	liters	0.4732	square kilometers	sq ft	10.76×10^{6}
pints (iq.)	quarts (iiq.)	0.5	square kilometers	sq inches	1.550×10^{9}
Pounds (advp)	ounces (troy)	14.5833	square kilometers	59 meters	10^{6}
pounds	drams	256.	square kilometers	sq miles	0.3861
pounds	grams	453.5924	square kilometers	sq yards	1.196×10^{6}
pounds	kilograms	0.4536	square meters	acres	2.471×10^{-4}
pounds	ounces	16.0	square meters	sq cms	104
pounds	ounces (troy)	14.5833	square meters	sq feet	10.76
pounds	pounds (troy)	1.21528	square meters	sq inches	1,550.
pounds	tons (short)	0.0005	square meters	sq miles	3.861×10^{-7}
pounds (troy)	ounces (avdp.)	13.1657	square meters	sq millimeters	10°
pounds (troy)	ounces (troy)	12.0	square meters	sa yards	1.196
pounds (troy)	pounds (avdp.)	0.822857	square miles	acres	640.0
pounds (troy)	tons (long)	3.6735×10^{-4}	square miles	sq feet	27.88×10^{6}
pounds (troy)	tons (metric)	3.7324×10^{-4}	square miles	sq kms	2.590
pounds (troy)	tons (short)	4.1143×10^{-4}	square miles	sq meters	2.590×10^{6}
pounds of water	cu feet	0.01602	square miles	sq yards	3.098×10^{6}
pounds of water	cu inches	27.68	square millimeters	sq cms	0.01
pounds of water	gallons	0.1198	square millimeters	sq feet	1.076×10^{-5}
pounds/cu ft	grams/cu cm	0.01602	square millimeters	sq inches	1.550×10^{-3}
pounds/cu ft	$\mathrm{kgs} / \mathrm{cu}$ meter	16.02	square mils	sq cms	6.452×10^{-6}
pounds/cu ft	pounds/cu in.	5.787×10^{-4}	square mils	sq inches	10^{-6}
pounds/cu in	$\mathrm{gms} / \mathrm{cu} \mathrm{cm}$	27.68	square yards	acres	2.066×10^{-4}
pounds/cu in	$\mathrm{kgs} / \mathrm{cu}$ meter	2.768×10^{4}	square yards	sq cms	8,361.
pounds/cu in	pounds/cu ft	1,728.	square yards	sq feet	9.0
pounds/ft	kgs/meter	1.488	square yards	sq inches	1,296.
pounds/in.	$\mathrm{gms} / \mathrm{cm}$	178.6	square yards	sq meters	0.8361

Table A-17d

FREQUENTLY USED CONVERSION FACTORS

TO CONVERT	ImTo mu	mulifiply by	to convert	INTO	MULTIPLY BY
square yards	sa miles	3.288×10^{-7}	tons (short)	ounces (troy)	29,166.66
square yards	sq millimeters	8.361×10^{5}	tons (short)	pounds	2,000.
	T		tons (short)	pounds (troy)	2,430.56
			tons (short)	tons (long)	0.89287
temperature$\left({ }^{\circ} \mathrm{C}\right)+273$	absolute temperature (${ }^{\circ} \mathrm{C}$)	C) 1.0	tons (short)	tons (metric)	0.9078
			tons (short)/sq ft	$\mathrm{kgs} / \mathrm{sq}$ meter	9,765.
temperature$\left({ }^{\circ} \mathrm{C}\right)+17.78$	temperature (${ }^{\circ} \mathrm{F}$)	1.8	tons (short)/sq ft	pounds/sq in.	2,000.
			tons of water/24 hrs	pounds of water/hr	83.333
temperature$\left({ }^{\circ} \mathrm{F}\right)+460$	absolute temperature (${ }^{\circ} \mathrm{F}$)	1.0	tons of water/24 hrs	gatlons/min	0.16643
			tons of water/24 hrs	$\mathrm{cuft} / \mathrm{hr}$	1.3349
temperature (${ }^{\circ} \mathrm{F}$)-32	temperature (${ }^{\circ} \mathrm{C}$)	5/9		Y	
tons (long)	kilograms	1,016.		1	
tons (long)	pounds	2,240.	yards	centimeters	91.44
tons (long)	tons (short)	1.120	yards	kilometers	9.144×10^{-4}
tons (metric)	kilograms	1,000	yards	meters	0.9144
tons (metric)	pounds	2,205.	yards	miles (naut.)	4.934×10^{-4}
tons (short)	kilograms	907.1848	yards	miles (stat.)	5.682×10^{-4}
tons (short)	ounces	32.000	yards	millimeters	914.4

TABLE A-18
METRIC CONVERSION OF DIAMETER

in	mm	in	mm	in	mm	in	mm
6	150	30	750	57	1425	96	2400
8	200	33	825	60	1500	102	2550
10	250	36	900	63	1575	108	2700
12	300	39	975	66	1650	114	2850
15	375	42	1050	69	1725	120	3000
18	450	45	1125	72	1800	132	3300
21	525	48	1200	78	1950	144	3600
24	600	51	1275	84	2100	156	3900
27	675	54	1350	90	2250	168	4200

TABLE A-19

METRIC CONVERSION OF WALL THICKNESS

in	mm	in		mm		in	
1	25	$3-1 / 8$	79	5	125	in	mm
$1-1 / 2$	38	$3-1 / 4$	82	$5-1 / 4$	131	8	200
2	50	$3-1 / 2$	88	$5-1 / 2$	138	9	213
$2-1 / 4$	56	$3-3 / 4$	94	$5-3 / 4$	144	$9-1 / 2$	235
$2-3 / 8$	59	$3-7 / 8$	98	6	150	10	250
$2-1 / 2$	63	4	100	$6-1 / 4$	156	$10-1 / 2$	263
$2-5 / 8$	66	$4-1 / 8$	103	$6-1 / 2$	163	11	275
$2-3 / 4$	69	$4-1 / 4$	106	$6-3 / 4$	169	$11-1 / 2$	288
$2-7 / 8$	72	$4-1 / 2$	113	7	175	12	300
3	75	$4-3 / 4$	119	$7-1 / 2$	188	$12-1 / 2$	313

APPENDIX B

LOADS AND SUPPORTING STRENGTHS

Based on Marston/Spangler Design Procedure
The design procedure for the selection of pipe strength requires:
I. Determination of Earth Load
2. Determination of Live Load
3. Selection of Bedding
4. Determination of Bedding Factor
5. Application of Factor of Safety
6. Selection of Pipe Strength

TYPES OF INSTALLATIONS

The earth load transmitted to a pipe is largely dependent on the type of installation, and the three common types are Trench, Positive Projecting Embankment, and Negative Projecting Embankment. Pipe are also installed by jacking or tunneling methods where deep installations are necessary or where conventional open excavation and backfill methods may not be feasible. The essential features of each of these installations are shown in Figure 146.

Trench. This type of installation is normally used in the construction of sewers, drains and water mains. The pipe is installed in a relatively narrow trench excavated in undisturbed soil and then covered with backfill extending to the ground surface.

$$
\mathrm{W}_{\mathrm{d}}=\mathrm{C}_{\mathrm{d}} \mathrm{w} \mathrm{~B}_{\mathrm{d}}^{2}
$$

Cd is further defined as:

$$
\begin{equation*}
C_{d}=\frac{1-e^{-2 K \mu^{\prime}} \frac{H}{B_{d}}}{2 K \mu^{\prime}} \tag{B2}
\end{equation*}
$$

[^3]Tables B1 through B30 are based on equation (B1) and list backfill loads in pounds per linear foot for various heights of backfill and trench widths. There are four tables for each circular pipe size based on $\mathrm{K}^{\prime}=0.165,0.150,0.130$ and 0.110. The "Transition Width" column gives the trench width at which the backfill load on the pipe is a maximum and remains constant regardless of any increase in the width of the trench. For any given height of backfill, the maximum load at the transition width is shown by bold type.

Figures B1 through B8 also present backfill loads for circular pipe installed in a trench condition. For elliptical and arch pipe, Figures 155 through 178 in the main body of the manual may be used. The solid lines represent trench widths and the dashed lines represent pipe size for the evaluation of transition widths and maximum backfill loads. If, when entering the figures from the horizontal axis, the dashed line representing pipe size is interesected before the solid line representing trench width, the actual trench width is wider than the transition width and the maximum backfill load should be read at the intersection of the height of backfill and the dashed line representing pipe size.

Positive Projecting Embankment. This type of installation is normally used when the culvert is installed in a relatively flat stream bed or drainage path. The pipe is installed on the original ground or compacted fill and then covered by an earth fill or embankment. The fill load on a pipe installed in a positive projecting embankment condition is computed by the equation:

$$
W_{c}=C_{c} w B_{c}^{2}
$$

B3

C, is further defined as:

$$
\begin{aligned}
& C_{c}=\frac{e^{2 K \mu \frac{H}{B_{c}}}-1}{2 K \mu} \text { when } H \leq H_{e} \\
& C_{C}=\frac{e^{2 K \mu} \frac{H_{e}}{B_{c}}-1}{2 K \mu^{\prime}}+\left(\frac{H}{B_{c}}-\frac{H_{e}}{B_{c}}\right) e^{2 K \mu \frac{H_{e}}{B_{c}}} \text { when } H>H_{e}
\end{aligned}
$$

The settlements which influence loads on positive projecting embankment installations are shown in Illustration B1. To evaluate the He term in equation (B5), it is necessary to determine numerically the relationship between the pipe deflection and the relative settlement between the prism of fill directly above the pipe and the adjacent soil. This relationship is defined as a settlement ratio, expressed as:

$$
\begin{equation*}
r_{s d}=\frac{\left(S_{m}+S_{g}\right)-\left(S_{f}+d_{c}\right)}{S_{m}} \tag{B6}
\end{equation*}
$$

[^4]
Illustration B. 1 Settlements Which Influence Loads Positive Projecting Embankment Installation

TOP OF EMBANKMENT

The fill load on a pipe installed in a positive projecting embankment condition is influenced by the product of the settlement ratio (rsd) and the projection ratio (p). The projection ratio (p) is the vertical distance the pipe projects above the original ground divided by the outside vertical height of the pipe ($\mathrm{B}^{\prime} \mathrm{c}$). Recommended settlement ratio design values are listed in Table B-31.

Figures B-9 through B-13 include fill loads in pounds per linear foot for circular pipe under various fill heights and pipe sizes based on rsdp values of 0 , $0.1,0.3,0.5$ and 1.0. For elliptical pipe, Figures 179 through 193 in the main body of the manual may be used. The dashed $\mathrm{H}=\mathrm{He}$ line represents the condition where the height of the plane of equal settlement (He) is equal to the height of fill (H).

Negative Projecting Embankment. This type of installation is normally used when the culvert is installed in a relatively narrow and deep stream bed or drainage path. The pipe is installed in a shallow trench of such depth that the top of the pipe is below the natural ground surface or compacted fill and then covered with an earth fill or embankment which extends above the original ground level. The fill load on a pipe installed in a negative projecting embankment condition is computed by the equation:

$$
W_{n}=C_{n} w B_{d}^{2}
$$

C_{n} is further defined as:

$$
\begin{aligned}
& C_{n}=\frac{e^{-2 K \mu \frac{H}{B_{d}}}-1}{-2 K \mu} \text { when } H \leq H_{e} \\
& \text { and } \\
& C_{n}=\frac{e^{-2 K \mu \frac{H_{e}}{B_{d}}-1}}{-2 K \mu^{\prime}}+\left(\frac{H}{B_{d}}-\frac{H_{e}}{B_{d}}\right) e^{-2 K \mu \frac{H_{e}}{B_{d}}} \text { when } H>H_{e} \quad \text { B9 }
\end{aligned}
$$

When the material within the subtrench is densely compacted, equation (B7) can be expressed as $W_{n}=C_{n w B d B ' d}$ where $B^{\prime} d$ is the average of the trench width and the outside diameter of the pipe.

Illustration B. 2 Settlements Which Influence Loads
Negative Projecting Embankment Installation
TOP OF EMBANKMENT

- Initial Elevation
----- Final Elevation
The settlements which influence loads on negative projecting embankment installations are shown in Illustration B2. As in the case of the positive projecting embankment installation, it is necessary to define the settlement ratio. Equating
the deflection of the pipe and the total settlement of the prism of fill above the pipe to the settlement of the adjacent soil:

$$
r_{s d}=\frac{S_{g}-\left(S_{d}+S_{f}+d_{c}\right)}{S_{d}}
$$

Recommended settlement ratio design values are listed in Table B-31. The projection ratio (p^{\prime}) for this type of installation is the distance from the top of the pipe to the surface of the natural ground or compacted fill at the time of installation divided by the width of the trench. Where the ground surface is sloping, the average vertical distance from the top of the pipe to the original ground should be used in determining the projection ratio (p '). Figures 194 through 213 present fill loads in pounds per linear foot for circular pipe based on projection ratios of 0.5 , $1.0,1.5,2.0$ and settlement ratios of $0,-0.1,-0.3,-0.5$ and -1.0 . The dashed $\mathrm{H}=$ p'Bd line represents the limiting condition where the height of fill is at the same elevation as the natural ground surface. The dashed $H=H e$, line represents the condition where the height of the plane of equal settlement (He) is equal to the height of fill (H).

SELECTION OF BEDDING

A bedding is provided to distribute the vertical reaction around the lower exterior surface of the pipe and reduce stress concentrations within the pipe wall. The load that a concrete pipe will support depends on the width of the bedding contact area and the quality of the contact between the pipe and bedding. An important consideration in selecting a material for bedding is to be sure that positive contact can be obtained between the bed and the pipe. Since most granular materials will shift to attain positive contact as the pipe settles an ideal load distribution can be attained through the use of clean coarse sand, wellrounded pea gravel or well-graded crushed rock.

Trench Beddings. Four general classes of bedding for the installation of circular pipe in a trench condition are illustrated in Figure B-14. Trench bedding for horizontal elliptical, arch and vertical elliptical pipe are shown in Figure B-15.

Embankment Beddings. Four general classes of bedding for the installation of circular pipe in an embankment condition are shown in Figure B-16. Embankment beddings for horizontal elliptical, arch and vertical elliptical pipe are shown in Figure B-17. Class A through D bedding classifications are presented as a guideline which should be reasonably attainable under field conditions. To assure that the in-place supporting strength of the pipe is adequate, the width of the band of contact between the pipe and the bedding material should be in accordance with the specified class of bedding. With the development of mechanical methods for subgrade preparation, pipe installation, backfilling and compaction, the flat bottom trench with granular foundation is generally the more practical method of bedding. If the pipe is installed in a flat bottom trench, it is
essential that the bedding material be uniformly compacted under the haunches of the pipe.

DETERMINATION OF BEDDING FACTOR

Under installed conditions the vertical load on a pipe is distributed over its width and the reaction is distributed in accordance with the type of bedding. When the pipe strength used in design has been determined by plant testing, bedding factors must be developed to relate the in-place supporting strength to the more severe plant test strength. The bedding factor is the ratio of the strength of the pipe under the installed condition of loading and bedding to the strength of the pipe in the plant test. This same ratio was defined originally by Spangler as the load factor. This latter term, however, was subsequently defined in the ultimate strength method of reinforced concrete design with an entirely different meaning. To avoid confusion, therefore, Spangler's term was renamed the bedding factor. The three-edge bearing test as shown in Illustration B. 3 is the normally accepted plant test so that all bedding factors described below relate the in-place supporting strength to the three-edge bearing strength.

Illustration B. 3 Three-Edge Bearing Test

The bedding factor for a particular pipeline, and consequently the supporting strength of the buried pipe, depends upon two characteristics of the installation:

- Width and quality of contact between the bedding and the pipe
- Magnitude of the lateral pressure and the portion of the vertical area of the pipe over which it is effective

Since the sidefill material can be more readily compacted for pipe installed in a positive projection embankment condition, the effect of lateral pressure is considered in evaluating the bedding factor. For trench installations, the effect
of lateral pressure was neglected in development of bedding factors. Instead of a general theory as for the embankment condition, Spangler, from analysis of test installations, established conservative fixed bedding factors for each of the standard classes of bedding used for trench installations.

Trench Bedding Factors. Conservative fixed bedding factors for pipe installed in a narrow trench condition are listed below the particular classes of beddings shown in Figures B-14 and B-15.

Both Spangler and Schlick, in early lowa Engineering Experiment Stations publications, postulate that some active lateral pressure is developed in trench installations before the transition width is reached. Experience indicates that the active lateral pressure increases as the trench width increases from a very narrow width to the transition width, provided the sidefill is compacted. Defining the narrow trench width as a trench having a width at the top of the pipe equal to or less than the outside horizontal span plus one foot, and assuming a conservative linear variation, the variable trench bedding factor can be determined by:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{fv}}=\left(\mathrm{B}_{\mathrm{fe}}-\mathrm{B}_{\mathrm{ft}}\right)\left[\frac{\mathrm{B}_{\mathrm{d}}-\left(\mathrm{B}_{\mathrm{c}}+1.0\right)}{\mathrm{B}_{\mathrm{dt}}-\left(\mathrm{B}_{\mathrm{c}}+1.0\right)}\right]+\mathrm{B}_{\mathrm{ft}} \tag{B11}
\end{equation*}
$$

Where:
$\mathrm{Bc}_{\mathrm{c}}=$ outside horizontal span of pipe, feet
$\mathrm{Bd}=$ trench width at top of pipe, feet
Bdt = transition width at top of pipe, feet
Bee = bedding factor, embankment
$\mathrm{Bft}_{\mathrm{f}}=$ fixed bedding factor, trench
$\mathrm{B}_{\mathrm{fv}}=$ variable bedding factor, trench
A six-step design procedure for determining the trench variable bedding factor is:

- Determine the trench fixed bedding factor, Bft
- Determine the trench width, Bd
- Determine the transition width for the installation conditions, Bdt
- Determine H / Bc ratio, settlement ratio, rsd, projection ratio, p , and the product of the settlement and projection ratios, rsap
- Determine positive projecting embankment bedding factor, Be
- Calculate the trench variable bedding factor, Biv

Positive Projecting Embankment Bedding Factors. For pipe installed in a positive projecting embankment condition, active lateral pressure is exerted against the sides of the pipe. Bedding factors for this type of installation are computed by the equation:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{f}}=\frac{\mathrm{A}}{\mathrm{~N}-\mathrm{xq}} \tag{B12}
\end{equation*}
$$

For circular pipe q is further defined as:

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{pK}}{\mathrm{C}_{\mathrm{c}}}\left(\frac{\mathrm{H}}{\mathrm{~B}_{\mathrm{c}}}+\frac{\mathrm{p}}{2}\right) \leq 0.33 \tag{B13}
\end{equation*}
$$

For elliptical and arch pipe q is further defined as:
$\mathrm{q}=\frac{\mathrm{pB}^{\prime}{ }_{c} \mathrm{~K}}{\mathrm{C}_{\mathrm{c}} \mathrm{B}_{\mathrm{c}}^{2}}\left(\mathrm{H}+\frac{\mathrm{pB}_{\mathrm{c}}}{2}\right) \leq 0.33$
The value of q, as determined by equations B13 and B 14, shall not exceed 0.33.

Tables B32 and B33 list bedding factors for circular pipe. For elliptical and arch pipe bedding factors may be found in Tables 59 through 61 in the main body of the manual.

Negative Projecting Embankment Bedding Factors. The methods described for determining trench bedding factors should be used for negative projecting embankment installations.

APPLICATION OF FACTOR OF SAFETY

The total earth and live load on a buried concrete pipe is computed and multiplied by a factor of safety to determine the pipe supporting strength required. The safety factor is defined as the relationship between the ultimate strength D-load and the 0.01 -inch crack D-load. This relationship is specified in the ASTM standards on reinforced concrete pipe. Therefore, for reinforced concrete pipe a factor of safety of 1.0 should be applied if the 0.01 -inch crack strength is used as the design criterion. For nonreinforced concrete pipe a factor of safety of 1.25 to 1.5 is normally used.

SELECTION OF PIPE STRENGTH

Since numerous reinforced concrete pipe sizes are available, three-edge bearing test strengths are classified by D-loads. The D-load concept provides strength classification of pipe independent of pipe diameter. For reinforced circular pipe the three-edge bearing test load in pounds per linear foot equals D-load X inside diameter in feet. For arch, horizontal elliptical and vertical elliptical pipe the three-edge bearing test load in pounds per linear foot equals D -load X nominal inside span in feet.

The required three-edge bearing strength of non-reinforced concrete pipe is expressed in pounds per linear foot, not as a D-load, and is computed by the equation:

$$
\begin{equation*}
\text { T.E.B. }=\frac{W_{L}+W_{E}}{B_{f}} \times \text { F.S. } \tag{B15}
\end{equation*}
$$

The required three-edge bearing strength of circular reinforced concrete pipe is expressed as D -load and is computed by the equation:

$$
\begin{equation*}
\text { D-load }=\frac{W_{L}+W_{E}}{B_{\mathrm{f}} \times \mathrm{D}} \times \mathrm{F} . \mathrm{S} . \tag{B16}
\end{equation*}
$$

The determination of required strength of elliptical and arch concrete pipe is computed by the equation:

$$
\text { D-load }=\frac{W_{L}+W_{E}}{B_{f} \times S} \times \text { F.S. } \quad \mathrm{B} 17
$$

EXAMPLE PROBLEMS

EXAMPLE B-1

Trench Installation

Given: A 48 inch circular pipe is to be installed in a 7 foot wide trench with 35 feet of cover over the top of the pipe. The pipe will be backfilled with sand and gravel weighing 110 pounds per cubic foot.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

Solution: 1. Determination of Earth Load (WE)
From Table B-14A, Sand and Gravel, the backfill load based on 100 pounds per cubic foot backfill is 12,000 pounds per linear foot. Increase the load 10 percent for 110 pound backfill material.
$W_{d}=1.10 \times 12,000$
$W d=13,200$ pounds per linear foot
2. Determination of Live Load (WL)

From Table 42, live load is negligible at a depth of 35 feet.
3. Selection of Bedding

A Class B bedding will be assumed for this example. In actual design, it may be desirable to consider other types of bedding in order to arrive at the most economical overall installation.
4. Determination of Bedding Factor (Bf)

The trench variable bedding factor, Bfv is given by Equation B11:

$$
\mathrm{B}_{\mathrm{fv}}=\left(\mathrm{B}_{\mathrm{fe}}-\mathrm{B}_{\mathrm{ft}}\right)\left[\frac{\mathrm{B}_{\mathrm{d}}-\left(\mathrm{B}_{\mathrm{c}}+1.0\right)}{\mathrm{B}_{\mathrm{dt}}-\left(\mathrm{B}_{\mathrm{c}}+1.0\right)}\right]+\mathrm{B}_{\mathrm{ft}}
$$

Step 1. From Figure B-14, for circular pipe installed on a Class B bedding, the trench fixed bedding factor, Bft , is 1.9.

Step 2. A trench width, Bd, of 7 feet is specified.
Step 3. The transition width, Bdt, determined from Table B-14A is 11.4 feet.

Step 4. $\mathrm{H} / \mathrm{Bc}=35 / 4.8=7.3$
From Table B-31, the rsd design range of values for ordinary soil is +0.5 to +0.8 . Assume an rsd value of +0.5 . For a granular Class B bedding $p=0.5$, then $r s d p=0.5 \times 0.5=0.25$.

Step 5. From Table $\mathrm{B}-32$ for $\mathrm{H} / \mathrm{Bc}=7.3, \mathrm{p}=0.5, \mathrm{rsap}=0.25$ and a Class B bedding, $\mathrm{Bfe}=2.19$.

Step 6. The trench variable bedding factor is:

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{fv}}=(2.19-1.9)\left[\frac{7-(4.8+1.0)}{11.4-(4.8+1.0)}\right]+1.9 \\
& \mathrm{~B}_{\mathrm{fv}}=1.96
\end{aligned}
$$

Use a variable bedding factor, Biv of 1.96 to determine the required D-load pipe strength.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 -inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by Equation B16:
$D_{0.01}=\frac{W_{L}+W_{E}}{B_{f} \times D} \times$ F.S.
$W_{L+} W_{E}=W_{d}=13,200$ pounds per linear foot
$D_{0.01}=\frac{13,200}{1.96 \times 4.0} \times 1.0$
$D_{0.01}=1684$ pounds per linear foot per foot of inside diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 1684 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE B-2
 Positive Projecting Embankment Installation

Given: A 48 inch circular pipe is to be installed in a positive projecting embankment condition in ordinary soil. The pipe will be covered with 35 feet of 110 pounds per cubic foot overfill.

Find: The required pipe strength in terms of 0.01 inch crack D-load.
Solution: 1. Determination of Earth Load (WE)
A settlement ratio must first be assumed. In Table B-31 values of settlement ratio from +0.5 to +0.8 are given for positive projecting installations on a foundation of ordinary soil. A conservative value of 0.7 will be used with an assumed projection ratio of 0.7. The product of the settlement ratio and the projection ratio will be 0.49 ($\mathrm{rsdp}=0.5$).

Enter Figure B-12 on the horizontal scale at $\mathrm{H}=35$ feet. Proceed vertically until the line representing $D=48$ inches is intersected. At this point the vertical scale shows the fill load to be 25,300 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 10 percent for 110 pound material.

$$
\begin{aligned}
& W_{c}=1.10 \times 25,300 \\
& W_{c}=27,800 \text { pounds per linear foot }
\end{aligned}
$$

2. Determination of Live Load (WL)

From Table 42, live load is negligible at a depth of 35 feet.
3. Selection of Bedding

A Class B bedding will be assumed for this example. In actual design, it may be desirable to consider other types of bedding in order to arrive at the most economical overall installation.
4. Determination of Bedding Factor (Bf)

The outside diameter for a 48 inch diameter pipe is 58 inches $=$ 4.83 feet. From Table B-32, from an H / Bc ratio of 7.25 , rsdp value of $0.5, p$ value of 0.7 and Class B bedding, a bedding factor of 2.34 is obtained.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by equation B16:

$$
\begin{aligned}
& D_{0.01}=\frac{W_{L}+W_{E}}{B_{f} \times D} \times F . S . \\
& W_{L+}+W_{E}=W_{c}=27,800 \text { pounds per linear foot } \\
& D_{0.01}=\frac{27,800}{2.34 \times 4.0} \times 1.0 \\
& D_{0.01}=2970 \text { pounds per linear foot per foot of inside diameter }
\end{aligned}
$$

Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 2970 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE B-3
 Negative Projecting Embankment Installation

Given: A 48 inch circular pipe is to be installed in a negative projecting embankment condition in ordinary soil. The pipe will be covered with 35 feet of 110 pounds per cubic foot overfill. A 7 foot trench width will be constructed with a 7 foot depth from the top of the pipe to the natural ground surface.

Find: The required pipe strength in terms of 0.01 inch crack D-load.

Solution: 1. Determination of Earth Load (WE)

A settlement ratio must first be assumed. In Table B-31, for a negative projection ratio, $\mathrm{p}^{\prime}=1.0$, the design value of the settlement ratio is -0.3 .

Enter Figure 201 on the horizontal scale at $\mathrm{H}=35$ feet. Proceed vertically until the line representing $\mathrm{Bd}_{\mathrm{d}}=7$ feet is intersected. At this point the vertical scale shows the fill load to be 15,800 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 10 percent for 110 pound material.

$$
\begin{aligned}
& W_{n}=1.10 \times 15,800 \\
& W_{n}=17,380 \text { pounds per linear foot }
\end{aligned}
$$

2. Determination of Live Load (WL)

From Table 42, live load is negligible at a depth of 35 feet.
3. Selection of Bedding

A Class B bedding will be assumed for this example. In actual design, it may be desirable to consider other types of bedding in order to arrive at the most economical overall installation.
4. Determination of Bedding Factor (Bf)

The trench variable bedding factor, Bf , is given by Equation B 11 :
$B_{f v}=\left(B_{f e}-B_{f t}\right)\left[\frac{B_{d}-\left(B_{c}+1.0\right)}{B_{d t}-\left(B_{c}+1.0\right)}\right]+B_{f t}$
Step 1. From Figure B-14, for circular pipe installed on a Class B bedding, the trench fixed bedding factor, Bft , is 1.9.

Step 2. A trench width, Bd, of 7 feet is specified.
Step 3. The transition width, Bdt, determined from Table B-14 is 11.4 feet.

Step 4. $\mathrm{H} / \mathrm{Bc}=35 / 4.8=7.3$
From Table B-31, the rsd design range of values for ordinary soil is +0.5 to +0.8 . Assume an rsd value of +0.5 . For a granular Class B bedding $p=0.5$, then $r s d p=0.5 \times 0.5=$ 0.25.

Step 5. From Table B-32, for $\mathrm{H} / \mathrm{Bc}=7.3, \mathrm{p}=0.5$, $\mathrm{rsdp}=0.25$ and a Class B bedding, $\mathrm{Bfe}_{\mathrm{f}}=2.19$.

Step 6. The trench variable bedding factor is:
$B_{f v}=(2.19-1.9)\left[\frac{7-(4.8+1.0)}{11.4-(4.8+1.0)}\right]+1.9$
$B_{f v}=1.96$
Use a variable bedding factor, Bfv, of 1.96 to determine the required D-load pipe strength.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by equation B16:
$D_{0.01}=\frac{W_{L}+W_{E}}{B_{f} \times D} \times F . S$.
$W_{L+} W_{E}=W_{n}=17,380$ pounds per linear foot
$D_{0.01}=\frac{17,380}{1.96 \times 4.0} \times 1.0$
$D_{0.01}=2217$ pounds per linear foot per foot of inside diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 2217 pounds per linear foot per foot of inside diameter would be required.

EXAMPLE B-4

Wide Trench Installation

Given: A 24 inch circular pipe is to be installed in a 5 foot wide trench with 9 feet of cover over the top of the pipe. The pipe will be backfilled with ordinary clay weighing 120 pounds per cubic foot.

Find: The required three-edge bearing test strength for nonreinforced pipe and the ultimate D-load for reinforced pipe.

Solution: 1. Determination of Earth Load (WE)
From Table $\mathrm{B}-8 \mathrm{C}$, the transition width for $\mathrm{H}=9$ feet is $4^{\prime}-88^{\prime \prime}$. Since the actual 5 foot trench width exceeds the transition width, the backfill load based on 100 pounds per cubic foot backfill is 3,331 pounds per linear foot as given by the bold type. Increase the load 20 percent for 120 pound backfill material.

$$
\begin{aligned}
& W_{d}=1.20 \times 3,331 \\
& W_{d}=3,997 \text { pounds per linear foot }
\end{aligned}
$$

2. Determination of Live Load (WL)

From Table 42, the live load is 240 pounds per linear foot.
3. Selection of Bedding

A Class C bedding will be assumed for this example.
4. Determination of Bedding Factor (Bf)

Since the trench is beyond transition width, a bedding factor for an embankment condition is required.

The outside diameter for a 24 inch diameter pipe is 30 inches $=2.5$ feet. $\mathrm{H} / \mathrm{Bc}=3.6$. From Table $\mathrm{B}-31$, the rsd design range of values for ordinary soil is +0.5 to +0.8 . Assume an rsd value of +0.5 . For shaped Class C bedding $\mathrm{p}=0.9$, then $\mathrm{rsdp}=0.5 \times 0.9=0.45$. From Table B-33, a bedding factor of 2.07 is obtained.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.5 based on the three-edge bearing strength for nonreinforced pipe and ultimate D-load for reinforced pipe will be applied.
6. Selection of Pipe Strength The three-edge bearing strength for nonreinforced pipe is given by equation B15:
T.E.B. $=\frac{W_{L}+W_{E}}{B_{f}} \times$ F.S.
$W_{L}+W_{E}=W_{d}=4,237$ pounds per linear foot
T.E.B. $=\frac{4,237}{2.07} \times 1.5$
T.E.B. $=3,070$ pounds per linear foot

The D-load for reinforced pipe is given by equation B16:

$$
\begin{aligned}
& D_{\text {ult. }}=\frac{W_{L}+W_{E}}{B_{f} \times D} \times \text { F.S. } \\
& D_{\text {ult. }}=\frac{4,237}{2.07 \times 2.0} \times 1.5
\end{aligned}
$$

$D_{\text {ult. }}=1,535$ pounds per linear foot per foot of inside diameter
Answer: A nonreinforced pipe which would withstand a minimum three edge bearing test load of 3,070 pounds per linear foot would be required.

A reinforced pipe which would withstand a minimum three-edge bearing test load for the ultimate load of 1,535 pounds per linear foot per foot inside diameter would be required.

EXAMPLE B-5
 Positive Projecting Embankment Installation Vertical Elliptical Pipe

Given: A 76 inch X 48 inch vertical elliptical pipe is to be installed in a positive projecting embankment condition in ordinary soil. The pipe will be covered with 50 feet of 120 pounds per cubic foot overfill.

Find: \quad The required pipe strength in terms of 0.01 inch crack D-load.
Solution: 1. Determination of Earth Load (WE)
A settlement ratio must first be assumed. In Table B-31 values of settlement ratio from +0.5 to +0.8 are given for positive projecting installations on a foundation of ordinary soil. A value of 0.5 will be used. The product of the settlement ratio and the projection ratio will be 0.35 ($\mathrm{rsdp}=0.3$).

Enter Figure 181 on the horizontal scale at $\mathrm{H}=50$ feet. Proceed vertically until the line representing $R \times S=766^{\prime \prime} \times 48^{\prime \prime}$ is intersected. At this point the vertical scale shows the fill load to be 37,100 pounds per linear foot for 100 pounds per cubic foot fill material. Increase the load 20 percent for 120 pound material.

$$
\begin{aligned}
& W_{c}=1.20 \times 37,100 \\
& W_{c}=44,520 \text { pounds per linear foot }
\end{aligned}
$$

2. Determination of Live Load (WL)

From Table 44, live load is negligible at a depth of 50 feet.
3. Selection of Bedding

A Class B bedding will be assumed for this example.
4. Determination of Bedding Factor (Bf)

From Table 59, for an H / Bc, ratio of 9.84 , rsap value of 0.3 , p value of 0.7 and a Class B bedding, a bedding factor of 2.80 is obtained.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength

The D-load is given by equation B17:
$D_{0.01}=\frac{W_{L}+W_{E}}{B_{f} \times S} \times$ F.S.
$\mathrm{W}_{\mathrm{L}+} \mathrm{W}_{\mathrm{E}}=\mathrm{W}_{\mathrm{C}}=44,520$ pounds per linear foot
$D_{0.01}=\frac{44,520}{2.80 \times 4.0} \times 1.0$
$D_{0.01}=3,975$ pounds per linear foot per foot of inside horizonal span
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 inch crack of 3,975 pounds per linear foot per foot of inside horizontal span would be required.

EXAMPLE B-6
Highway Live Load

Given: A 12 inch circular pipe is to be installed in a narrow trench $\mathrm{Bd} \leq\left(\mathrm{Bc}_{\mathrm{c}}+\right.$ 1.0), under an unsurfaced roadway and covered with 1.0 foot of 120 pounds per cubic foot backfill material.

Find: The required pipe strength in terms of 0.01 inch crack D-load.
Solution: 1. Determination of Earth Load (WE)
For pipe installed with less than 3 feet of cover, it is sufficiently accurate to calculate the backfill or fill load as being equal to the weight of the prism of earth on top of the pipe.

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d}}=\mathrm{wHB} \mathrm{~B}_{\mathrm{c}} \\
& \mathrm{~W}_{\mathrm{d}}=120 \times 1.0 \times 1.33 \\
& \mathrm{~W}_{\mathrm{d}}=160 \text { pounds per linear foot }
\end{aligned}
$$

2. Determination of Live Load (WL)

Since the pipe is being installed under an unsurfaced roadway with shallow cover, a truck loading based on legal load limitations should be evaluated. From Table 42, for $D=12$ inches, $H=1.0$ foot and AASHTO loading, a live load of 2,080 pounds per linear foot is obtained. This live load value includes impact.
3. Selection of Bedding A Class C bedding will be assumed for this example.
4. Determination of Bedding Factor (Bf)

From Figure B-14, for circular pipe installed on a Class Cedding, a bedding factor of 1.5 is obtained.
5. Application of Factor of Safety (F.S.)

A factor of safety of 1.0 based on the 0.01 inch crack will be applied.
6. Selection of Pipe Strength The D-load is given by equation B16:
$D_{0.01}=\frac{W_{L}+W_{E}}{B_{f} \times D} \times$ F.S.
$D_{0.01}=\frac{2,080+160}{1.5 \times 1.0} \times 1.0$
$D_{0.01}=1,493$ pounds per linear foot per foot of inside diameter
Answer: A pipe which would withstand a minimum three-edge bearing test load for the 0.01 -inch crack of 1,443 pounds per linear foot per foot of inside diameter would be required.

Appendix B Tables \&
 Figures

Table B－1

¢	HEIGHT OF BACKFILL H ABOVE TOP OF PIPE，FEET 							
	$\stackrel{¢}{\circ}$							
	\％						蜃	
	轡							¢ \％\％\％
								Fota
	－			\％\％iojo				
			N	－			－	20\％
	3			\％		－		¢ \％m mim
	0	¢ ¢ ¢ ¢ ¢ \％\％\％					－	－
				－		隹景きさ		
				8\％	－	\％	운ㅈ용	
								\therefore
	－							
	管							\％
	发芜							Nequ
	\mathfrak{y}		¢ ${ }_{\sim}^{\text {No }}$	筞尌等			Fơm	\％iN
	$\left\{\begin{array}{l} 3 \\ \cline { 1 - 1 } \\ \cline { 1 - 1 } \\ 0 \end{array}\right.$					\％\％	${ }^{\circ}$	\％oor
	足		－\％				ズ̊\％\％\％\％	
	\％		F \％\％\％\％		H\％E®0	\％\％®		
	管		筞学をすす				\％${ }^{\text {\％}}$	9\％9\％等
			 ヨa＇\exists dld $=$		え～～』 か NO日 H 7	71コンOV日＝		

Table B－1 Continued
SATURATED CLAY K $\mu^{\prime}-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE，FEET 								
	－							
	号							
	¢							（1）
	－					$\begin{aligned} & 9 \\ & \stackrel{9}{N} \\ & \mathbf{N} \\ & \hline \end{aligned}$		
	$\begin{gathered} i \\ i \\ i v \end{gathered}$				$\begin{aligned} & \mathscr{P} \underset{\sim}{\mathcal{O}} \\ & \underset{N}{N} \\ & \end{aligned}$			
	$\begin{gathered} \dot{B} \\ \stackrel{\sim}{\sim} \end{gathered}$			우우우웅		$\frac{0}{N} \frac{N}{N} \frac{N}{N} \frac{0}{N}$		
	$\begin{gathered} \dot{\circ} \\ \underset{~}{c} \end{gathered}$		$\begin{gathered} N \\ N \\ \sim \end{gathered}$			$\underset{N}{N} \underset{\sim}{N}$		$\begin{aligned} & \infty \\ & \infty \\ & \sim \\ & \sim \\ & \sim \end{aligned}$
	－	$\underset{N}{\infty}$						
	io		$\left\lvert\, \begin{array}{llll} \infty & 0 & 0 & - \\ \hline & 0 & 0 \\ \hline \end{array}\right.$					
	$\stackrel{\square}{-}$			$\left\|\begin{array}{ccccc} 1 & \boxed{0} & 0 & 0 \\ \hdashline & \pm & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\|$		N甘吴员员品	솟옹옹	剣名名只只

＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foot，increase 20% ；etc．

[^5]
Table B-2

Table B-2 Continued
ORDINARY CLAY K $\mu^{\prime}-0.130$

安	ㄴ	 						
$\underline{\underline{U}}$	[\%
	io							
	¢							
-	$\left\|\begin{array}{c} 0 \\ -i \\ -3 \end{array}\right\|$							
$\stackrel{+}{\circ}$	$\begin{gathered} \bar{\circ} \\ \stackrel{1}{N} \end{gathered}$					$\left\|\begin{array}{lllll} 0 & N & N & \infty \\ 0 & \infty \\ 0 & 0 & \underset{N}{N} & \underset{N}{N} & N \end{array}\right\|$		
工	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$		${ }^{10} 80 \times$			NNN N N O N N N N		$\begin{aligned} & 0 \\ & N_{0}^{N} \\ & \sim \\ & \sim \\ & N \end{aligned}$
$\begin{aligned} & 3 \\ & I \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$		$\begin{array}{llll} N & \infty & 9 & 0 \\ \hline \end{array}$					
$\underset{\sim}{\underset{\sim}{\omega}}$	$\begin{aligned} & \dot{O} \\ & \dot{\sim} \end{aligned}$		$\left\lvert\, \begin{array}{cccc} 0 & 0 & \underset{\sim}{\infty} \\ \underset{\sim}{N} & \stackrel{0}{\infty} \\ \hline \end{array}\right.$				$\underset{\sim}{5} \frac{\pi}{5} \frac{N}{5} \underset{\sim}{n}$	
F	$\begin{aligned} & \dot{6} \\ & \stackrel{1}{2} \end{aligned}$						9	$\stackrel{N}{\underset{\sim}{N}} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N}$
	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$			$\left\lvert\, \begin{array}{ccccc} -1 & N & \infty & \infty \\ -\infty & N & \infty \\ \infty & \infty \\ \hline \end{array}\right.$		$\left\lvert\, \begin{array}{lllll} 10 & \hat{n} & \infty & 0 & 0 \\ 0 & 0 & 0 \\ \infty & 0 & \infty & 0 & 0 \\ \infty & \infty & \infty & \infty \\ \hline \end{array}\right.$		

[^6]Table B-3

Table B－3 Continued
SATURATED CLAY K $\mu^{\prime}-0.110$

	TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \end{aligned}$	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION WIDTH	
	1＇－9＇	2－0＂	2＇－3＇	2＇－6＂	2＇－9＂	3＇－0＂	3＇－3＇	3＇－6＂	4＇－0＂	4＇－6＂		1＇－9＇	2＇－0＂	2＇－3＂	2＇－6＂	2＇－9＂	3－0＂	3＇－3＇	3＇－6＂	4＇－0＂	4＇－6＂		
5	617	743									2＇－${ }^{\prime \prime}$	649	743									1＇－11＇	5
6	694	833	893								2＇－1＂	737	893									2＇－${ }^{\prime \prime}$	6
7	761	919	1043								2＇－2＂	814	976	1043								2＇－1＂	7
8	819	994	1193								2＇－3＇	882	1064	1193								2＇－2＂	8
9	868	1060	1258	1344							2＇－4＂	943	1142	1344								2＇－3＇	9 I
山 10	911	1119	1334	1495							2＇－5＂	996	1212	1435	1495							2＇－4＂	10 m
山 11	948	1170	1400	1645							2＇－6＂	1042	1276	1516	1645							2＇－5＇	11 ¢
판 12	979	1215	1460	1713	1795						2＇－7＂	1084	1332	1589	1795							2＇－5＂	12 工
山 13	1007	1254	1513	1781	1946						2＇－8＂	1120	1383	1655	1946							2＇－6＂	13
믐 14	1030	1289	1560	1843	2094						2＇－8＇	1152	1428	1715	2012	2094						2＇－7＂＇	14 O
ㄴ． 15	1051	1319	1603	1898	2241						2＇－9＂	1180	1469	1770	2082	2241						2＇－8＂	15 m
$\bigcirc 16$	1068	1346	1640	1948	2267	2395					2＇－10＂	1205	1505	1819	2145	2395						2＇－8＇${ }^{\prime \prime}$	$16 \underset{ }{8}$
ロ． 17	1083	1369	1674	1993	2325	2547					2＇－11＂	1227	1537	1864	2204	2547						2＇－9＇${ }^{\prime \prime}$	17 冗
O 18	1096	1390	1703	2034	2378	2698					3＇－0＂	1247	1567	1905	2258	2623	2698					2＇－10＂	18 주
F19	1107	1408	1730	2070	2426	2842					3＇－0＂	1264	1593	1942	2307	2685	2842					2＇10＂	19 F
Ш 20	1117	1424	1754	2103	2469	2849	2994				3＇－1＂	1279	1616	1975	2352	2743	2994					2＇－11＂	20 －
$\bigcirc 21$	1125	1438	1775	2133	2509	2900	3150				3＇－2＂	1292	1637	2005	2393	2796	3150					3＇－${ }^{\prime \prime}$	21 I
m 22	1133	1450	1793	2159	2545	2947	3301				3＇－2＂	1304	1656	2033	2431	2846	3301					3＇－ 0 ＂	22 D
＜ 23	1139	1461	1810	2184	2578	2989	3445				3＇－3＇	1314	1673	2058	2465	2891	3333	3445				3＇－1＇	23 \％
工 24	1144	1470	1825	2205	2607	3029	3466	3595			3＇－4＂	1323	1688	2080	2497	2933	3387	3595				3＇－1＂	$24 \underset{\sim}{<}$
－ 25	1149	1478	1838	2225	2635	3064	3512	3739			3＇－5＂	1331	1701	2101	2526	2972	3436	3739				3＇－2＂	25 m
］ 26	1153	1486	1850	2242	2659	3097	3554	3892			3＇－5＂	1339	1714	2120	2552	3008	3483	3892				3＇－${ }^{\prime \prime}$	26 －
난	1156	1492	1861	2258	2682	3128	3593	4041			3＇－6＂	1345	1724	2136	2576	3041	3526	4041				3＇－3＂	27 ○
$\bigcirc 28$	1159	1498	1870	2273	2702	3155	3630	4201			3＇－6＂	1350	1734	2152	2599	3071	3566	4079	4201			3＇－4＂	28 0
¢ 29	1162	1502	1878	2286	2721	3181	3663	4165	4340		3＇－7＂	1355	1743	2166	2619	3099	3603	4126	4340			3＇－4＇	29 ¢
4 30	1164	1507	1886	2297	2738	3204	3693	4204	4493		3＇－8＇	1360	1751	2178	2638	3125	3637	4171	4493			3＇－5＇${ }^{\prime \prime}$	30
$\bigcirc 31$	1166	1511	1892	2308	2753	3225	3722	4240	4642		3＇－8＇	1363	1758	2190	2655	3149	3669	4212	4642			3＇－5＂＇	31 \％
1 32	1167	1514	1898	2317	2767	3245	3748	4274	4786		3＇－9＂	1367	1764	2200	2670	3171	3699	4250	4786			3＇－6＂	32 m
I 33	1169	1517	1904	2326	2780	3263	3772	4305	4950		3＇－9＂	1370	1769	2209	2685	3192	3727	4286	4950			3＇－6＂	33
U 34	1170	1519	1908	2333	2791	3279	3794	4334	5085		3＇－10＂	1372	1774	2218	2698	3211	3752	4320	4911	5085		3＇－7＂	34 m
Ш 35	1171	1522	1913	2340	2802	3294	3815	4361	5243		3＇－11＂	1374	1779	2226	2710	3228	3776	4351	4951	5243		3＇－7＇	35 m
工 36	1172	1524	1916	2346	2811	3308	3834	4386	5397		3＇－11＂	1376	1783	2233	2721	3244	3798	4381	4988	5397		3＇－8＂	36
37	1173	1525	1920	2352	2820	3321	3851	4409	5549		4＇－0＂	1378	1787	2239	2731	3259	3819	4408	5024	5549		3＇－8＇	37
38	1173	1527	1922	2357	2828	3333	3868	4431	5697		4－0＂	1380	1790	2245	2740	3273	3838	4434	5057	5697		3＇－9＇	38
39	1174	1528	1925	2362	2835	3343	3883	4451	5666	5842	4＇－1＂	1381	1793	2250	2749	3285	3856	4458	5088	5842		3＇－9＂	39
40	1174	1529	1927	2366	2842	3353	3896	4470	5696	5983	4＇－1＂	1382	1795	2255	2756	3297	3873	4480	5117	5983		3＇－10＂	40

[^7] Interpolate for intermediate heights of backfill and／or trench widths

Table B－4

A	SAND AND GRAVEL $K \mu^{\prime}-0.165$											B	LOAI	$\begin{aligned} & \text { SINF } \\ & \text { SAT } \end{aligned}$	$\begin{aligned} & \text { UND } \\ & \text { RATI } \end{aligned}$	TO	$\begin{aligned} & \text { NEAF } \\ & \mathrm{SO} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OOT } \\ & K \mu^{\prime}- \\ & \hline \end{aligned}$				$12^{7!}$	
	TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \end{aligned}$	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION WIDTH	
	2＇－0＂	2＇－3＂	2＇－6＂	2＇9＂	3＇0＂	3＇－3＂	3＇－6＂	4＇－0＂	4＇－6＂	5＇－0＇		2＇－0＂	2＇－3＂	2＇6＂	2＇－9＂	3－0＂	3＇－3＂	3＇－6＂	4－0＂	4＇－6＂	5＇－0＇		
5	680	797	915	985							2＇－8＇	703	821	939	985							2＇－7＇	
6	761	897	1036	1185							2＇－9＂	791	929	1069	1185							2＇． $8^{\prime \prime}$	6
7	830	984	1142	1302	1385						2＇11＂	866	1023	1183	1346	1385						2＇10＂	7
8	888	1059	1235	1414	1585						3＇－ $0^{\prime \prime}$	931	1106	1285	1467	1585						2＇11＂	8
9	937	1124	1316	1513	1713	1786					3＇－1＇	987	1179	1375	1576	1786						3＇－0＂	9
岩 10	$\underline{979}$	1180	1388	1601	1819	1982					3＇－${ }^{\prime \prime}$	1035	1242	1455	1674	1896	1982					3＇－1＂	10 男
㞻 11	1014	1228	1450	1679	1914	2182					3＇－3＇	1077	1298	1526	1761	2001	2182					3＇－2＂	$11 \frac{11}{0}$
－ 12	1044	1270	1505	1748	1998	2254	2385				3＇－ $5^{\prime \prime}$	1112	1346	1589	1840	2096	2385					3＇－3＂	12 I
	1070	1306	1553	1810	2074	2345	2581				3＇－${ }^{\prime \prime}$	1143	1389	1645	1910	2182	2460	2581				3＇－4＂	13 －
高 14	1091 1110	1337 1364	1595 1632	1864 1912	2142 2203	2428	2720 2809	$\begin{aligned} & 2785 \\ & 2986 \end{aligned}$			3＇－${ }^{\prime \prime}$	1170 1192	1426 1459	1695 1738	1973	2260 2330	2553 2639	$\begin{aligned} & 2785 \\ & 2986 \end{aligned}$				3＇－5＂ 3＇－6＂	14 O
$\stackrel{\text { ¢ }}{\square}$	1125	1387	1664	1955	2258	2570	2890	3186			3＇－9＂	1212	1487	1777	2080	2394	2716	3047	3186			3＇－7＇	15 m
	1138	1407	1693	1993	2306	2631	2964	3385			3＇－10＂	1229	1512	1812	2126	2451	2787	3132	3385			3＇－8＂	$17 \stackrel{8}{8}$
O 18	1149	1424	1717	2027	2350	2686	3032	3588			3＇11＇	1243	1534	1843	2167	2504	2852	3210	3588			3＇－9＂	18 त
$\vdash 19$	1159	1439	1739	2057	2389	2735	3093	3780			4＇－ $0^{\prime \prime}$	1256	1553	1870	2203	2551	2911	3282	3780			3＇－10＂	19 끌
$\stackrel{4}{\square} 20$	1167	1452	1758	2083	2425	2780	3148	3979			4＇－${ }^{\prime \prime}$	1266	1570	1894	2236	2593	2965	3347	3979			3＇－11＂	20 F
$\bigcirc 21$	1174	1463	1775	2107	2456	2821	3199	3991	4177		4＇－1＂	1276	1584	1915	2265	2632	3014	3408	4177			4＇－${ }^{\prime \prime}$	21 I
022	1179	1473	1790	2128	2484	2857	3245	4058	4377		4＇－${ }^{\prime \prime}$	1284	1597	1934	2292	2667	3058	3463	4377			4＇－ 0 ＂	22
＜ 23	1184	1481	1802	2146	2510	2891	3287	4121	4581		4＇－3＇	1291	1608	1951	2315	2699	3099	3514	4383	4581		4＇－1＂	23 \％
I 24	1189	1488	1814	2163	2532	2920	3325	4179	4777		4＇－4＂	1296	1618	1966	2336	2727	3136	3561	4451	4777		4＇－2＂	24 O
－ 25	1192	1494	1824	2177	2552	2947	3360	4232	4979		4＇－5＂	1301	1627	1979	2355	2753	3170	3604	4515	4979		4＇－3＂	25 m
立 26	1195	1500	1832	2190	2571	2972	3392	4280	5174		4＇－6＂	1306	1634	1991	2373	2777	3201	3643	4574	5174		4－4＂	26
$\stackrel{\text { ¢ }}{\text { ¢ }}$	1198	1504	1840	2201	2587	2994	3421	4325	5289	5377	4＇－7＂	1310	1641	2001	2388	2798	3229	3679	4629	5377		4＇－ 5 ＂	27 O－1
U 28	1200	1508	1846	2212	2601	3014	3447	4367	5349	5575	4＇－7＂	1313	1647	2010	2401	2817	3255	3712	4680	5575		4＇－5＂	287
¢ 29	1201	1512	1852	2221	2614	3032	3471	4405	5404	5784	4＇－8＂	1316	1652	2019	2414	2834	3278	3743	4727	5784		4＇－6＂	29 O
－ 30	1203	1515	1857	2229	2626	3048	3492	4440	5456	5969	4＇－9＂	1318	1656	2026	2425	2850	3300	3771	4771	5836	5969	4＇－7＂	307
－ 31	1204	1517	1862	2236	2637	3063	3512	4472	5504	6188	4＇－10＂	1320	1660	2032	2435	2864	3319	3796	4811	5895	6188	4＇－8＂	31 ㄲ
－ 32	1205	1520	1866	2242	2646	3076	3530	4502	5549	6381	4＇－10＂	1322	1663	2038	2444	2877	3337	3820	4849	5950	6381	4＇－8＇	32 苗
T 33	1206	1521	1869	2247	2654	3088	3546	4529	5590	6569	4＇－11＂	1323	1666	2043	2451	2889	3353	3842	4884	6002	6569	4＇－9＂	33 II
$\bigcirc 34$	1207	1523	1872	2252	2662	3099	3561	4555	5629	6774	5＇－0＂	1325	1669	2048	2459	2899	3368	3861	4916	6050	6774	4＇10＂	34 7
Ш 35	1208	1525	1875	2257	2669	3109	3575	4578	5665	6976	5＇－1＂	1326	1671	2052	2465	2909	3381	3880	4946	6095	6976	4＇10＂	35 m
工 36	1208	1526	1877	2261	2675	3118	3587	4599	5698	7173	5＇－1＂	1327	1673	2055	2471	2918	3393	3896	4974	6137	7173	4＇11＂	36 －1
37	1209	1527	1879	2264	2680	3126	3598	4619	5729	7365	5＇－2＂	1328	1675	2058	2476	2925	3405	3912	5000	6177	7365	5＇－0＂	37
38	1209	1528	1881	2267	2685	3133	3608	4637	5758	7583	5－3＂	1328	1676	2061	2480	2932	3415	3926	5024	6214	7583	5． 0 ＂	38
39	1210	1529	1882	2270	2689	3139	3618	4654	5784	7765	5＇－4＂	1329	1678	2064	2485	2939	3424	3939	5047	6248	7765	5＇－1＂	39
40	1210	1529	1884	2272	2693	3145	3626	4669	5809	7976	5＇－4＇	1330	1679	2066	2488	2945	3433	3950	5067	6280	7976	5＇－2＂	40

Table B－4 Continued
ORDINARY CLAY K ${ }^{\circ}-\mathbf{-} 0.130$

	｜ri						0	
	－							
	－							
	－							
	\dot{m} $\stackrel{y}{c}$ m			No				
	－							
	¢			筞	M 용 －ㄷNN		Nocco	
	$\stackrel{?}{\sim}$							
	－	NM						

＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foo
ATransition loads（bold type）and widths based on $K \mu-0.19$ ，$r_{\text {sdd }} 0-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and／or trench widths

Table B－5

A	SAND AND GRAVEL K μ＇－0．165											B	LOA	SIN SAT	$\begin{aligned} & \text { UND } \\ & \text { RAT } \end{aligned}$		$\begin{aligned} & \text { NEAI } \\ & \text { SO } \end{aligned}$	ION FOOT $K \mu '$	-0.150				
	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION WIDTH	TRENCH WIDTH AT TOP OF PIPE										$\begin{array}{\|l\|} \hline \text { ATRAN- } \\ \text { STION } \\ \text { WIDTH } \\ \hline \end{array}$	
	2＇－3＇	2＇－6＇	2＇－9＂	3＇－0＂	3＇－3＂	3＇－6＂	4＇－0＂	4＇－6＂	5－0＂	6＇－0＂		2＇－3＂	2＇－6＂	2＇－9＂	3－0＂	3＇－3＇	3＇－6＂	$4^{\prime-} 0^{\prime \prime}$	4＇－6＂	5＇－0＇	6＇－0＇		
5	797	915	1033	1153	1203						3＇－1＂	821	939	1059	1180	1203						3＇－1＂	5
6	897	1036	1176	1317	1448						3＇－3＂	929	1069	1210	1353	1448						3＇－2＂	6
7	984	1142	1302	1464	1628	1692					3＇－4＂	1023	1183	1346	1510	1692						3＇－3＂	7
8	1059	1235	1414	1596	1780	1938					3＇－5＇	1106	1285	1467	1652	1838	1938					3＇－5＂	8
9	1124	1316	1513	1713	1917	2123	2183				3＇－7＂	1179	1375	1576	1780	1986	2183					3：－6＂	9
［10	1180	1388	1601	1819	2041	2266	2429				3＇－8＇	1242	1455	1674	1896	2122	2350	2429				3：－7＂	10 I
山 11	1228	1450	1679	1914	2153	2396	2672				3＇－ $9^{\prime \prime}$	1298	1526	1761	2001	2245	2492	2672				3－8＇	
L 12	1270	1505	1748	1998	2254	2514	2920				3＇－11＂	1346	1589	1840	2096	2357	2623	2920				3－9＂	$12 \frac{\Omega}{I}$
แ 13	1306	1553	1810	2074	2345	2622	3162				4＇－${ }^{\prime \prime}$	1389	1645	1910	2182	2460	2743	3162				3＇－10＇	13 －
믐 14	1337	1595	1864	2142	2428	2720	3320	3408			4＇－1＂	1426	1695	1973	2260	2553	2853	3408				3－11＂	14 O
ㄴ． 4	1364	1632	1912	2203	2502	2809	3441	3647			4＇－2＂	1459	1738	2030	2330	2639	2954	3647				4－0＂	15 T
$\bigcirc 16$	1387	1664	1955	2258	2570	2890	3553	3900			4＇－3＂	1487	1777	2080	2394	2716	3047	3726	3900			4－2＂	16 回
Q 17	1407	1693	1993	2306	2631	2964	3655	4142			4＇－4＂	1512	1812	2126	2451	2787	3132	3843	4142			4－2＂${ }^{\prime \prime}$	17 ¢
$\bigcirc 18$	1424	1717	2027	2350	2686	3032	3750	4382			4＇－5＂	1534	1843	2167	2504	2852	3210	3950	4382			4－3＇	18 줒
F 19	1439	1739	2057	2389	2735	3093	3837	4624			4＇－6＂	1553	1870	2203	2551	2911	3282	4050	4624			4－4＂	19 끌
	1452	1758	2083	2425	2780	3148	3917	4720	4870		4＇－7＇${ }^{\prime \prime}$	1570	1894	2236	2593	2965	3347	4143	4870			4－5＂	20 F
$\bigcirc 21$	1463	1775	2107	2456	2821	3199	3991	4820	5123		4＇－8＂	1584	1915	2265	2632	3014	3408	4229	5123			4－6＂	21 I
m 22	1473	1790	2128	2484	2857	3245	4058	4913	5368		4＇－9＇	1597	1934	2292	2667	3058	3463	4309	5192	5368		4－7＂	22 ¢
＜ 23	1481	1802	2146	2510	2891	3.287	4121	5000	5603		4＇－10＇	1608	1951	2315	2699	3099	3514	4383	5293	5603		4－8＂	23
I 24	1488	1814	2163	2532	2920	3325	4179	5080	5851		4＇－11＂	1618	1966	2336	2727	3136	3561	4451	5387	5851		4－9＂	24 O
－ 25	1494	1824	2177	2552	2947	3360	4232	5155	6091		5＇－${ }^{\prime \prime}$	1627	1979	2355	2753	3170	3604	4515	5475	6091		4－10＂	25 m
근 26	1500	1832	2190	2571	2972	3392	4280	5224	6213	6350	5＇－ $1^{\prime \prime}$	1634	1991	2373	2777	3201	3643	4574	5557	6350		4－11＂	26 －
ㄴ 27	1504	1840	2201	2587	2994	3421	4325	5289	6300	6588	5＇－2＂	1641	2001	2388	2798	3229	3679	4629	5634	6588		4－11＂	27 ○
$\bigcirc 28$	1508	1846	2212	2601	3014	3447	4367	5349	6382	6833	5＇－3＂	1647	2010	2401	2817	3255	3712	4680	5706	6833		5：－0＂	28 T
¢ 29	1512	1852	2221	2614	3032	3471	4405	5404	6458	7070	5＇－3＇${ }^{\prime \prime}$	1652	2019	2414	2834	3278	3743	4727	5773	6870	7070	5－－1＂	$29 \bigcirc$
H 30	1515	1857	2229	2626	3048	3492	4440	5456	6529	7319	5＇－ $\mathbf{4}^{\prime \prime}$	1656	2026	2425	2850	3300	3771	4771	5836	6955	7319	5－2＇	307
O 31	1517	1862	2236	2637	3063	3512	4472	5504	6596	7561	5＇－5＂＇	1660	2032	2435	2864	3319	3796	4811	5895	7036	7561	5－－3＂	31 T
－ 32	1520	1866	2242	2646	3076	3530	4502	5549	6659	7818	5＇－6＂	1663	2038	2444	2877	3337	3820	4849	5950	7111	7818	5－3＂	32 m
I 33	1521	1869	2247	2654	3088	3546	4529	5590	6717	8046	5＇－7＇	1666	2043	2451	2889	3353	3842	4884	6002	7182	8046	5－4＂	33 －
¢ 34	1523	1872	2252	2662	3099	3561	4555	5629	6772	8290	5＇－8＇	1669	2048	2459	2899	3368	3861	4916	6050	7249	8290	5－5＂	34 T17
Ш 35	1525	1875	2257	2669	3109	3575	4578	5665	6823	8556	5＇－8＂	1671	2052	2465	2909	3381	3880	4946	6095	7312	8556	5－6＂	35 m
工 36	1526	1877	2261	2675	3118	3587	4599	5698	6871	8789	5＇－9＂	1673	2055	2471	2918	3393	3896	4974	6137	7372	8789	5－7＂	$36-1$
37	1527	1879	2264	2680	3126	3598	4619	5729	6916	9045	5＇－10＂	1675	2058	2476	2925	3405	3912	5000	6177	7428	9045	5：－7＂	37
38	1528	1881	2267	2685	3133	3608	4637	5758	6958	9265	5＇－11＂	1676	2061	2480	2932	3415	3926	5024	6214	7480	9265	5－8＂	38
39	1529	1882	2270	2689	3139	3618	4654	5784	6998	9510	6＇－ $0^{\prime \prime}$	1678	2064	2485	2939	3424	3939	5047	6248	7530	9510	5－9＂	39
40	1529	1884	2272	2693	3145	3626	4669	5809	7035	9785	6＇－ $0^{\prime \prime}$	1679	2066	2488	2945	3433	3950	5067	6280	7577	9785	$5-10^{\prime \prime}$	40

Table B－5 Continued
SATURATED CLAY K $\mu^{\prime}-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE，FEET								
	0							
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\frac{\square}{2}$	$\left\lvert\, \begin{array}{cccc} -\infty & \infty & 0 & 0 \\ \hline \end{array}\right.$	
	\pm							
	$\begin{aligned} & 1 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{N}{N} \end{gathered}$						
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$					$\left\lvert\, \begin{array}{lll} N & 0 & 0 \\ N & N \\ \hline & O \\ \hline \end{array}\right.$		
	$\begin{aligned} & \dot{0} \\ & \text { o } \end{aligned}$	$\stackrel{N}{N}$						$\begin{array}{lllll} \infty & 0 & \infty & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \infty & \infty & \infty & \infty & \infty \\ m & 0 & \infty & \infty \\ \hline \end{array}$
	$\begin{aligned} & \dot{\bar{\circ}} \\ & \stackrel{1}{\mathrm{a}} \\ & \hline \end{aligned}$							
	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$						$\left\|\begin{array}{llll} 1 & 0 & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ N & 0 & N & N \end{array}\right\|$	$\underset{N}{N} \underset{N}{N}$
	n		$\left[\begin{array}{lll} 0 & 0 & 0 \\ \\ 0 & 0 \\ \sim & 0 \\ \sim \end{array}\right.$				OR	

For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foot，increase 20\％；etc．
ATransition loads（bold type）and widths based on $K \mu-0.19$ ，$r_{s d p}$ p－ 0.5 in the embankment equation
Interpolate for intermediate heights of backfill and／or trench widths
ORDINARY CLAY K $\mu^{\prime}-0.130$

					$\begin{array}{ll} \hline 0 \\ \hline \mathbf{O} & 0 \\ \hline \end{array}$	
岗品品			0		0	
$\begin{array}{\|c\|c} 0 & \vdots \\ u & 0 \\ 0 & z \end{array}$					Now	
$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & b \\ & \hline \end{aligned}$				an		
$\begin{array}{l\|l} 2 & \vdots \\ 3 & \vdots \\ 1 & 0 \\ \hline \end{array}$						
					$\underset{N}{\sim}$	
$\left[\begin{array}{c} \underset{y}{2} \\ \underset{\sim}{2} \\ \hline \end{array}\right.$					0	

Table B－6

A	SAND AND GRAVEL $K \mu$＇－0．165											B	LOA	$\begin{aligned} & S I N \\ & \text { SAT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { AT } \end{aligned}$	TC	SO	$\begin{aligned} & \text { оот } \\ & \mathrm{K} \mu^{\prime}- \\ & \hline \end{aligned}$	0.1			$18^{I I}$	
	TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \end{aligned}$	TRENCH WIDTH AT TOP OF PIPE										LTRAN－ SITINN WIDTH WIDTH	
	2＇－6＂	2－9＂	3＇－0＂	3＇－3＂	3＇－6＂	4＇0＂	4＇－6＂	5＇－0＂	6＇－0＂	7＇－0＇		2＇－6＂	2＇－9＂	3＇0＂	3＇－3＂	3＇－6＂	4＇－0＂	4＇－6＂	5＇－0＂	6＇－0＂	7－0＂		
5	915	1033	1153	1274	1411						3＇－6＂	939	1059	1180	1301	1411						3＇－6＂	5
6	1036	1176	1317	1460	1603	1700					3＇－8＂	1069	1210	1353	1497	1641	1700					3＇－7＂	6
7	1142	1302	1464	1628	1793	1989					3＇－10＂＇	1183	1346	1510	1675	1842	1989					3＇－9＂	7
8	1235	1414	1596	1780	1966	2277					3＇－11＂	1285	1467	1652	1838	2026	2277					$3^{\prime}-10^{\prime \prime}$	8
9	1316	1513	1713	1917	2123	2566					4＇－ $0^{\prime \prime}$	1375	1576	1780	1986	2195	2566					3＇－11＂	9
㟧 10	1388	1601	1819	2041	2266	2723	2855				4＇－${ }^{\prime \prime}$＂	1455	1674	1896	2122	2350	2814	2855				4＇－1＂	10 I
㟧 11	1450	1679	1914	2153	2396	2891	3145				4＇－3＂＇	1526	1761	2001	2245	2492	2996	3145				4＇－2＇	$11 \stackrel{m}{\Omega}$
［12	1505	1748	1998	2254	2514	3046	3431				4＇－4＂	1589	1840	2096	2357	2623	3164	3431				4＇－${ }^{\prime \prime}$	$12 \frac{1}{1}$
	1553	1810	2074	2345	2622	3189	3718				4＇－5＂	1645	1910	2182	2460	2743	3321	3718				4＇－4＂	13 －
－ 14	1595	1864 1912	2142	2428	2720 2809	3320 3441	3938 4093	4012			4＇－7＇${ }^{\prime \prime}$	1695 1738	1973 2030	2260 2330	2553 2639	2853	3466	4012 4298				4＇－5＂	14 O
$\stackrel{4}{\circ} 16$	1664	1955	2258	2570	2890	3553	4238	4584			4＇－9＂	1777	2080	2394	2716	3047	3726	4426	4584			4＇－${ }^{\prime \prime}$	15 ¢ 16
Q． 17	1693	1993	2306	2631	2964	3655	4372	4877			4＇10＂	1812	2126	2451	2787	3132	3843	4576	4877			4＇－8＂	$17 \stackrel{8}{8}$
ㅇ 18	1717	2027	2350	2686	3032	3750	4497	5168			4＇11＂	1843	2167	2504	2852	3210	3950	4716	5168			4＇－9＂	18 주
$\vdash 19$	1739	2057	2389	2735	3093	3837	4613	5444			5＇0＂	1870	2203	2551	2911	3282	4050	4848	5444			4＇－10＂	19 끌
山 20	1758	2083	2425	2780	3148	3917	4720	5552	5737		5＇－1＂	1894	2236	2593	2965	3347	4143	4970	5737			4＇－11＂	20 F
$\bigcirc 21$	1775	2107	2456	2821	3199	3991	4820	5681	6035		5＇－ 2 ＂	1915	2265	2632	3014	3408	4229	5085	6035			5－0＂	21 エ
¢ 22	1790	2128	2484	2857	3245	4058	4913	5802	6324		5＇－3＂	1934	2292	2667	3058	3463	4309	5192	6107	6324		5＇－1＂	22 ¢
－ 23	1802	2146	2510	2891	3287	4121	5000	5915	6600		5＇．4＂	1951	2315	2699	3099	3514	4383	5293	6236	6600		5＇－2＂	23 m
エ 24	1814	2163	2532	2920	3325	4179	5080	6021	6887		5＇－5＂	1966	2336	2727	3136	3561	4451	5387	6358	6887		5＇－3＂	24 O
－ 25	1824	2177	2552	2947	3360	4232	5155	6120	7189		5＇－6＂	1979	2355	2753	3170	3604	4515	5475	6473	7189		5＇－4＂	25 \％
座 26	1832	2190	2571	2972	3392	4280	5224	6213	7455		5＇．7＂	1981	2373	2777	3201	3643	4574	5557	6582	7455		5＇－5＂	26
$\underset{4}{4} 27$	1840	2201	2587	2994	3421	4325	5289	6300	7768		5＇－8＇	2001	2388	2798	3229	3679	4629	5634	6684	7768		5＇－6＂	270
\bigcirc	1846	2212	2601	3014	3447	4367	5349	6382	8044		5＇－ $9^{\prime \prime}$	2010	2401	2817	3255	3712	4680	5706	6780	8044		5＇－7＂	28
¢ 29	1852	2221	2614	3032	3471	4405	5404	6458	8344		5＇10＂	2019	2414	2834	3278	3743	4727	5773	6870	8344		5＇－8＂	29 O
	1857	2229	2626	3048	3492	4440	5456	6529	8636		5＇11＂	2026	2425	2850	3300	3771	4771	5836	6955	8636		5＇－9＂	307
$\bigcirc 31$	1862	2236	2637	3063	3512	4472	5504	6596	8901		6＇－${ }^{\prime \prime}$	2032	2435	2864	3319	3796	4811	5895	7036	8901		5＇－9＂	31 믐
－ 32	1866	2242	2646	3076	3530	4502	5549	6659	9032	9198	6＇－ $\mathbf{1}^{\prime \prime}$	2038	2444	2877	3337	3820	4849	5950	7111	9198		5＇－10＂	32 m
I 33	1869	2247	2654	3088	3546	4529	5590	6717	9132	9488	6＇－2＇	2043	2451	2889	3353	3842	4884	6002	7182	9488		5＇－11＂	33 －
－ 34	1872	2252	2662	3099	3561	4555	5629	6772	9227	9771	6＇．${ }^{\prime \prime}$	2048	2459	2899	3368	3861	4916	6050	7249	9771		$6{ }^{6}$－ $0^{\prime \prime}$	34 m
Ш35	1875	2257	2669	3109	3575	4578	5665	6823	9317	10070	6＇－3＇	2052	2465	2909	3381	3880	4946	6095	7312	9914	10070	6＇－1＂	35 m
工 36	1877	2261	2675	3118	3587	4599	5698	6871	9402	10340	6＇－4＂	2055	2471	2918	3393	3896	4974	6137	7372	10020	10340	6＇－1＂	36 －1
37	1879	2264	2680	3126	3598	4619	5729	6916	9483	10630	6＇－ $5^{\prime \prime}$	2058	2476	2925	3405	3912	5000	6177	7428	10110	10630	6^{6}－${ }^{\prime \prime}$	37
38	1881	2267	2685	3133	3608	4637	5758	6958	9559	10940	6＇－6＇	2061	2480	2932	3415	3926	5024	6214	7480	10200	10940	6＇－${ }^{\prime \prime}$	38
39	1882	2270	2689	3139	3618	4654	5784	6998	9631	11220	6＇－7＇	2064	2485	2939	3424	3939	5047	6248	7530	10290	11220	6＇－4＂	39
40	1884	2272	2693	3145	3626	4669	5809	7035	9700	11520	6＇－8＇	2066	2488	2945	3433	3950	5067	6280	7577	10380	11520	6＇－5＂	40

Table B-6 Continued

Table B－7

A	SAND AND GRAVEL K μ＋ 0.165											B	LOA	$\begin{aligned} & \text { IENC } \\ & \text { S IN P } \\ & \text { SATU } \end{aligned}$		$\begin{aligned} & 1 A \\ & \mathrm{ER} \\ & \mathrm{TO} \end{aligned}$		$\begin{aligned} & \text { ON } \\ & \text { OOT } \\ & K \mu^{\prime}- \end{aligned}$	． 1				
	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION WIDTH	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION WIDTH	
	3＇－0＂	3＇－3＇	3＇－6＇	3＇－9＇	$4^{\prime}-0^{\prime \prime}$	4＇－6＂	5＇－0＂	5＇6＂	6＇－0＇	7－0＇		3＇－0＂	3＇－3＇＇	3＇－6＂	3＇－9＇	4＇－0＂	4＇－6＂	5－0＂	5＇－6＂	6＇－0＇	$7^{\prime}-0^{\prime \prime}$		
5	1153	1274	1395	1516	1617						4－0＂	1180	1301	1423	1545	1617						3＇－11＂	5
6	1317	1460	1603	1748	1892	1951					4＇－1＂	1353	1497	1641	1786	1951						4－0＂	6
7	1464	1628	1793	1959	2127	2284					4＇－3＂	1510	1675	1842	2009	2178	2284					4－－2＂	7
8	1596	1780	1966	2153	2342	2617					4＇－4＂	1652	1838	2026	2215	2406	2617					4＇－3＂	8
－ 9	1713	1917	2123	2331	2540	2950					4＇－6＂	1780	1986	2195	2405	2617	2950					4＇－5＇	9
W 10	1819	2041	2266	2493	2723	3189	3282				4＇－7＂	1896	2122	2350	2581	2814	3282					4＇－${ }^{\prime \prime}$	10 I
山 11	1914	2153	2396	2642	2891	3397	3612				4＇－8＂	2001	2245	2492	2743	2996	3507	3612				4＇－7＂	
1i． 12	1998	2254	2514	2779	3046	3591	3947				4＇－10＇	2096	2357	2623	2892	3164	3717	3947				4＇－8＂	
Ш13	2074	2345	2622	2903	3189	3771	4280				4＇－11＂	2182	2460	2743	3030	3321	3912	4280				4＇－10＂	$13 \frac{I}{4}$
ㅁ． 14	2142	2428	2720	3018	3320	3938	4610				5＇－0＂	2260	2553	2853	3158	3466	4095	4610				4＇－11＂	$14 \bigcirc$
415	2203	2502	2809	3123	3441	4093	4760	4942			5＇－2＂	2330	2639	2954	3275	3601	4266	4942				5＇－ $0^{\prime \prime}$	15 T
$\bigcirc 16$	2258	2570	2890	3218	3553	4238	4940	5273			5＇－3＇${ }^{\prime \prime}$	2394	2716	3047	3384	3726	4426	5142	5273			5＇－1＇	16 \％
Q 17	2306	2631	2964	3306	3655	4372	5108	5606			5＇－4＂	2451	2787	3132	3484	3843	4576	5328	5606			5＇2＂	17 Д
$\bigcirc 18$	2350	2686	3032	3387	3750	4497	5266	5934			5＇－5＂	2504	2852	3210	3576	3950	4716	5503	5934			5＇－3＇	18 줒
$\begin{array}{ll}- & 19 \\ \text { Ш } & 20\end{array}$	2389	2735	3093 3148	3460 3528	3837	4613 4720	5413	6274			$5^{\prime}=6^{\prime \prime}$	2551	2911	3282	3662	4050	4848	5668	6274			5＇－4＇	19 끈
\geq	24	27	3148	35	3917	4720	5552	6405	6598		5＇－7＇	2593	2965	3347	3741	4143	4970	5823	6598			5＇－5＇	20 F
O	2456 2484	2821				4820		6566			5＇－	2632	3014	3408	3813	4229	5085	5969	6942			5＇－6＂	21 I
＜ 23	2510	2891	3287	3698	4121	5000	5915	6860	7591			2667	30	3	3881	4309	5192	6107	7046	7273		5＇－7＇	22 D
I 24	2532	2920	3325	3745	4179	5080	6021	6994	7916		6＇－ $0^{\prime \prime}$	2727	3136	3561	4000	4451	5387	6358					W
$\xrightarrow{-15}$	2552	2947	3360	3789	4232	5155	6120	7121	8255		6＇－ $0^{\prime \prime}$	2753	3170	3604	4053	4515	5475	6473	7504	8255		5＇－10＂	$25<$
ㅍ． 26	2571	2972	3392	3828	4280	5224	6213	7240	8298	8582	6＇－1＂	2777	3201	3643	4101	4574	5557	6582	7641	8582		5＇－11＂	26
¢ 27	2587	2994	3421	3865	4325	5289	6300	7352	8438	8928	6＇－3＇	2798	3229	3679	4146	4629	5634	6684	7771	8928		6＇－ $0^{\prime \prime}$	27 万
$\bigcirc 28$	2601	3014	3447	3898	4367	5349	6382	7458	8570	9266	6＇－4＇	2817	3255	3712	4188	4680	5706	6780	7893	9040	9266	6＇－1＂	28
¢ 29	2614	3032	3471	3929	4405	5404	6458	7557	8695	9593	6＇－5＇	2834	3278	3743	4226	4727	5773	6870	8010	9185	9593	6＇－2＂	$29 \bigcirc$
－ 30	2626	3048	3492	3957	4440	5456	6529	7651	8814	9910	6＇－5＂	2850	3300	3771	4262	4771	5836	6955	8120	9322	9910	6＇－3＇	30 T
$\bigcirc 31$	2637	3063	3512	3982	4472	5504	6596	7739	8926	10260	6＇－6＇	2864	3319	3796	4294	4811	5895	7036	8224	9453	10260	6＇－4＂	31 D
$\vdash 32$	2646	3076	3530	4006	4502	5549	6659	7822	9032	10590	6＇－7＂	2887	3337	3820	4325	4849	5950	7111	8323	9577	10590	6＇－5＂	32 T
I 33	2654	3088	3546	4027	4529	5590	6717	7901	9132	10920	6＇－8＇	2889	3353	3842	4352	4884	6002	7182	8416	9695	10920	6＇－6＂	33 m
$\bigcirc 34$	2662	3099	3561	4047	4555	5629	6772	7974	9227	11250	6＇－9＇	2899	3368	3861	4378	4916	6050	7249	8505	9807	11250	6＇－6＂	34 m
Ш 35	2669	3109	3575	4065	4578	5665	6823	8044	9317	11580	6＇－10＂	2909	3381	3880	4402	4946	6095	7312	8588	9914	11580	6＇－7＇	35 m
工 36	2675	3118	3587	4082	4599	5698	6871	8109	9402	11910	6＇－11＂	2918	3393	3896	4424	4974	6137	7372	8668	10020	11910	6＇－8＇	$36 \sim$
37	2680	3126	3598	4097	4619	5729	6916	8171	9483	12230	7＇－0＂	2925	3405	3912	4444	5000	6177	7428	8743	10110	12230	6＇－9＇	37
38	2685	3133	3608	4110	4637	5758	6958	8229	9551	12580	7－1＂	2932	3415	3926	4463	5024	6214	7480	8814	10200	12580	6＇－10＂	38
39	2689	3139	3618	4123	4654	5784	6998	8283	9631	12920	7＇－2＂	2939	3424	3939	4480	5047	6248	7530	8881	10290	12920	6＇－11＇	39
40	2693	3145	3626	4135	4669	5809	7035	8335	9700	13250	7＇－3＇＇	2945	3433	3950	4496	5067	6280	7577	8945	10380	13250	6＇－11＂	40

Table B-7 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET
$\boldsymbol{\infty} \boldsymbol{\sim}$

SATURATED CLAY $K \mu^{\prime}-0.110$										
TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \end{aligned}$
3'-0"	3'-3'	3'-6"	3'-9'	4-0"	4'-6"	5'-0'	5'6"	6'-0'	7'-0'	
1255	1378	1501	1617							3'-9"
1456	1602	1749	1896	1951						3'-10"
1642	1811	1982	2152	2284						3'-11"
1815	2007	2200	2394	2617						4'- $0^{\prime \prime}$
1976	2190	2405	2622	2839	2950					4'- 1"
2126	2361	2598	2836	3076	3282					4'-3"
2264	2520	2779	3039	3301	3612					4'-3"
2394	2670	2949	3230	3513	3947					4'- 4"
2514	2809	3108	3410	3714	4280					4'- 5"
2625	2940	3258	3580	3905	4610					4'-6"
2729	3061	3399	3740	4085	4783	4942				4-7"
2825	3175	3531	3891	4256	4994	5273				4'- 8"
2914	3282	3655	4034	4417	5195	5606				4'-9"
2998	3381	3772	4168	4570	5386	5934				4'-10"
3075	3474	3881	4295	4714	5568	6274				4'11"
3147	3561	3984	4414	4851	5742	6598				5'-0"
3213	3642	4080	4527	4981	5907	6942				5'-0"
3275	3718	4171	4633	5104	6064	7047	7273			5'- 1"
3333	3789	4256	4733	5220	6214	7233	7591			5'-2"
3387	3855	4336	4828	5329	6357	7410	7916			5'- 3'
3436	3917	4411	4917	5433	6493	7581	8255			5' 4"
3483	3975	4481	5001	5532	6622	7743	8582			5'-4"
3526	4029	4548	5080	5625	6745	7899	8928			5'- 5"
3566	4079	4610	5155	5713	6863	8048	9266			5'-6"
3603	4126	4668	5225	5797	6974	8191	9439	9593		5'-7"
3637	4171	4723	5292	5876	7081	8328	9608	9910		5'-7"
3669	4212	4774	5354	5950	7182	8458	9770	10260		5-8"
3699	4250	4823	5414	6021	7278	8583	9926	10590		5'-9"
3727	4286	4868	5469	6088	7370	8703	10080	10920		5'10"
3752	4320	4911	5522	6151	7458	8817	10220	11250		5'-10"
3776	4351	4951	5571	6211	7541	8927	10360	11580		5'-11"
3798	4381	4988	5618	6268	7620	9032	10490	11910		6'-0'
3819	4408	5024	5662	6322	7696	9132	10620	12230		$6^{\prime}-0^{\prime \prime}$
3838	4434	5057	5704	6373	7768	9228	10740	12300	12580	6'- 1"
3856	4458	5088	5743	6421	7836	9320	10860	12450	12920	6'- ${ }^{\prime \prime}$
3873	4480	5117	5780	6466	7902	9408	10970	12590	13250	6. $2^{\prime \prime}$

[^8]| | |
 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & 0 \\ & i \\ & i \end{aligned}$ | | | | | | | |
| | $1 \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | | | | +10 | | | |
| | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}\right.$ | | | | | | | |
| | io | | | | $\begin{array}{llll} \infty & v_{1} & 0 & J \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | | | |
| | $\begin{array}{\|c} \dot{\bar{\varphi}} \\ \stackrel{1}{\dot{\theta}} \end{array}$ | | | | | | | |
| | $\left\lvert\, \begin{aligned} & 1 \\ & 9 \\ & -1 \end{aligned}\right.$ | | | | | | | |
| | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$ | $\begin{array}{llll} \hline-9 & 0 & N & 0 \\ \hline \end{array}$ | | | | | | |
| | $\begin{aligned} & 0 \\ & 0 \\ & \text { on } \end{aligned}$ | | | | | | | |
| | $\begin{aligned} & \dot{9} \\ & \dot{9} \end{aligned}$ | | | | | | | |
| | $\begin{aligned} & 1 \\ & 0 \\ & 9 \\ & \text { en } \end{aligned}$ | | | | | $\underset{\sim}{\infty} \underset{\sim}{\infty}$ | | |
|
 | | | | | | | | |

Interpolate for intermediate heights of backfill and/or trench widths

Table B-8

Table B－8 Continued
D SATURATED CLAY K $\mu^{*}-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE，FEET 								
	－							
	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \\ \hline}}$							
	¢							
	$\begin{aligned} & i \\ & \vdots \\ & \hline \end{aligned}$					웅		
	O							
	$\begin{array}{\|c} i \\ i \\ i n \end{array}$			R ir ie N				
	$\begin{aligned} & \dot{y} \\ & \text { is } \end{aligned}$							NM N No No io
	$\stackrel{+}{\square}$			度恣 				\hat{O}_{\circ}°
	$\begin{aligned} & \hline \dot{9} \\ & \vdots \\ & \hline \end{aligned}$							
	$\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \end{array} \right\rvert\,$							$\underbrace{\infty}_{\infty}$

＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foot，increase 20\％；etc．
Transition loads（bold type）and widths based on $K \mu-0.19, r_{s d} p-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and／or trench widths

	TRENCH WIDTH AT TOP OF PIPE										TRAN－
	3＇－6＂	4＇0＇	4－6＂	5．0＇	5＇－6＂	6．－0＂	$6^{\prime}-6^{\prime \prime}$	7－0＂	7＇－6＂	8．0＂	WIDTH
5	1461	1707	1819								4＇－3＂
6	1694	1987	2199								4＇－ $4^{\prime \prime}$
7	1910	2249	2576								4＇－6＂
8	2110	2495	2882	2954							4＇－7＂
9	2297	2725	3158	3331							4＇－8＇
山 10	2470	2941	3418	3705							4＇－10＇
山 11	2630	3143	3663	4081							4＇－11＂
L 12	2779	3332	3894	4456							5＇－ $0^{\prime \prime}$
Ш13	2917	3510	4113	4724	4836						5＇－1＂
츰 14	3046	3676	4319	4972	5209						5－2＇
ㄴ． 15	3165	3832	4514	5207	5580						5＇－3＇
$\bigcirc 16$	3276	3978	4698	5430	5955						5＇－4＂
Q． 17	3378	4115	4871	5643	6330						5＇－5＂
$\bigcirc 18$	3474	4243	5035	5844	6708						5＇－6＂
F 19	3562	4364	5190	6035	6895	7082					5＇－7＇
Ш 20	3645	4476	5336	6216	7114	7455					5＇－8＂
$\bigcirc 21$	3721	4582	5473	6388	7323	7842					5＇－9＂
m 22	3792	4681	5603	6552	7522	8217					5＇－10＇
¢ 23	3858	4773	5726	6707	7712	8598					5＇－11＂
I 24	3919	4860	5842	6855	7893	8965					6＇－ $0^{\prime \prime}$
－ 25	3975	4942	5951	6994	8066	9159	9341				6＇－1＂
피 26	4028	5018	6054	7127	8230	9358	9704				6＇－2＂
צ 27	4077	5089	6151	7253	8387	9548	10080				6＇－3＂
\bigcirc	4122	5156	6243	7373	8537	9731	10450				6＇－4＇
m 29	4165	5219	6330	7486	8680	9905	10840				6＇－ $4^{\prime \prime}$
ᄂ 30	4204	5278	6412	7594	8817	10070	11220				6＇－5＂
$\bigcirc 31$	4240	5333	6489	7697	8947	10230	11580				6＇－6＂
132	4274	5385	6562	7794	9071	10380	11730	11990			6．－7＂
I 33	4305	5433	6631	7886	9189	10530	11910	12330			6＇－8＂
© 34	4334	5478	6696	7974	9302	10670	12080	12720			6＇－9＇
Ш 35	4361	5521	6757	8057	9410	10810	12240	13090			6＇－9＂
I 36	4386	5561	6815	8136	9513	10940	12400	13450			6＇－10＇
37	4409	5598	6870	8211	9610	11060	12550	13860			6＇－11＂
38	4431	5633	6921	8282	9704	11180	12700	14210			7＇－ $0^{\prime \prime}$
39	4451	5666	6970	8350	9793	11290	12840	14420	14610		7＇－1＇
40	4470	5696	7016	8414	9878	11400	12970	14580	14970		7＇－2＇

Table B-9

A	SAND AN				BACKFILL LOADS ON CIRCULAR PI * 100 POUNDS PER CUBIC FOOT BACKFILL MATERIA GRAVEL K $\mu^{\prime}-0.165$							N TRENCH INSTALLATION LOADS IN POUNDS PER LINEAR FOOT SATURATED TOP SOIL $K \mu$ ' -0.150										33^{5}	
	TRENCH WIDTH AT TOP OF PIPE										4 TRANSITION WIDTH	TRENCH WIDTH AT TOP OF PIPE										ATRANSITION WIDTH	
	4'-0'	4'-6"	5'-0"	5'-6"	6'-0'	6'-6"	7'-0'	7'-6"	8'-0"	$9^{\prime}-0^{\prime \prime}$		4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0'	7'-6"	8'-0"	$9{ }^{\prime}-0^{\prime \prime}$		
5	1638	1883	2119								5'-0"	1667	1913	2119								4'-11"	5
6	1892	2184	2477	2686							5'-4'	1932	2225	2519	2686							5'- 3'	6
7	2127	2463	2802	3155							5'- 6"	2178	2517	2857	3155							5'- 5"'	7
8	2342	2723	3107	3494	3620						5'- 8'	2406	2790	3176	3565	3620						5'-7"	8
9	2540	2964	3393	3824	4085						5'-10"	2617	3045	3477	3911	4085						5'-8"	$9 \mathrm{~T}$
Ш10	2723	3189	3660	4135	4551						5'-11"	2814	3284	3759	4239	4551						5'-10"	$10 \frac{I}{m}$
Ш11	2891	3397	3910	4428	4951	5015					6'- ${ }^{\prime \prime}$	2996	3507 3717	4026	4549	5015						5'-11" ${ }^{\prime \prime}$	
- 12	3046	3591	4144	4704	5270	5478					6'- 2"'	3164	3717	4277	4843	5414	5478					6'-1"	
Ш13	3189	3771	4363	4964	5572	5938					6'-4"	3321	3912	4513	5121	5735	5938					6'- 2"	$13 \underset{-1}{1}$
- 14	3320	3938	4568	5209	5858	6401					6'- 5"	3466	4095	4735	5384	6040	6401					6'- 3'	$14 \bigcirc$
L. 15	3441	4093	4760	5439	6128	6862					6'- 6"	3601	4266	4945	5634	6331	6862					6'- 5"	15 T
$\bigcirc 16$	3553	4238	4940	5656	6384	7120	7330				6'-8'	3726	4426	5142	5870	6608	7330					6'-6"	16
-17	3655	4372	5108	5861	6626	7401	7791				6'- 9"	3843	4576	5328	6094	6871	7657	7791				6'-7"	17 ¢
\bigcirc	3750	4497	5266	6053	6855	7669	8250				6'-10' ${ }^{\prime \prime}$	3950	4716	5503	6305	7121	7947	8250				6-8	18 줒
-19 $\amalg \quad 20$	3837 3917	4613 4720	5413	6234	7072 7277	7923	8711 9064	9179			7'-0" ${ }^{\prime \prime}$	4050 4143	4848 4970	56623	6506 6696	7359	8223	8711 9179				6'-9'	19 끈
$\bigcirc 21$	3991	4820	5681	6566	7472	8394	9331	9643			7'- 2"	4229	5085	5969	6876	7800	8740	9643				7'-0"	21
¢ 22	4058	4913	5802	6717	7656	8612	9585	10110			7'- 3"	4309	5192	6107	7046	8005	8981	9971	10110			7'- 1"	22 I
< 23	4121	5000	5915	6860	7830	8820	9827	10570			7'-4"	4383	5293	6236	7207	8200	9211	10240	10570			7'- 2"	23 ¢
工 24	4179	5080	6021	6994	7994	9017	10060	11020			7'-5"	4451	5387	6358	7360	8385	9431	10490	11020			7'- 3"	$24 \bigcirc$
- 25	4232	5155	6120	7121	8150	9204	10280	11370	11500		7'- 7'	4515	5475	6473	7504	8561	9641	10740	11500			7'- 4'	$25 \times$
근 26	4280	5224	6213	7240	8298	9382	10490	11620	11960		7'- 8'	4574	5557	6582	7641	8729	9841	10970	11960			7'- 5"	26 -
צ 27	4325	5289	6300	7352	8438	9552	10690	11850	12400		7'- 9"	4629	5634	6684	7771	8889	10030	11200	12400			7'-6"	27 ○
$\bigcirc 28$	4367	5349	6382	7458	8570	9713	10880	12070	12860		7'-10"	4680	5706	6780	7893	9040	10220	11410	12630	12860		7'- 7'	280
¢ 29	4405	5404	6458	7557	8695	9866	11060	12290	13340		7'-11"	4727	5773	6870	8010	9185	10390	11620	12870	13340		7'- 8'	$29 \bigcirc$
430	4440	5456	6529	7651	8814	10010	11240	12490	13810		8'- ${ }^{\prime \prime}$	4771	5836	6955	8120	9322	10560	11820	13100	13810		7'- 9'	30 T
$\bigcirc 31$	4472	5504	6596	7739	8926	10150	11400	12690	13990	14270	8'- ${ }^{\prime \prime}$	4811	5895	7036	8224	9453	10720	12010	13320	14270		7'-10"	31 ㅁ
$\vdash 32$	4502	5549	6659	7822	9032	10280	11560	12880	14210	14710	8'- 2"	4849	5950	7111	8323	9577	10870	12190	13540	14710		7'-11''	32 \%
I 33	4529	5590	6717	7901	9132	10400	11710	13060	14420	15180	8'- 3"	4884	6002	7182	8416	9695	11010	12360	13740	15180		8'- $0^{\prime \prime}$	33 -
$\bigcirc 34$	4555	5629	6772	7974	9227	10520	11860	13230	14620	15640	8'- 4'	4916	6050	7249	8505	9807	11150	12530	13940	15370	15640	8'- 1"	34 m
Ш 35	4578	5665	6823	8044	9317	10640	12000	13390	14820	16140	8'- 5"	4946	6095	7312	8588	9914	11280	12690	14130	15590	16140	8'- 2"'	35 m
I 36	4599	5698	6871	8109	9402	10740	12130	13550	15000	16570	8'- 6"	4974	6137	7372	8668	10020	11410	12840	14310	15800	16570	8'- 3'	$36 \xrightarrow{-1}$
37	4619	5729	6916	8171	9483	10850	12250	13700	15180	17050	8'-7"	5000	6177	7428	8743	10110	11530	12990	14480	16010	17050	8'- 4'	37
38	4637	5758	6958	8229	9559	10940	12370	13840	15350	17520	8'- 9"	5024	6214	7480	8814	10200	11640	13130	14650	16200	17520	8'- 5"	38
39	4654	5784	6998	8283	9631	11040	12490	13980	15510	17980	8'- 9'	5047	6248	7530	8881	10290	11760	13260	14810	16390	17980	8'-6"	39
40	4669	5809	7035	8335	9700	11120	12600	14110	15670	18430	8'-10"	5067	6280	7577	8945	10380	11860	13390	14960	16570	18430	8'-7'	40

Table B-9 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

* For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Δ Transition loads (bold type) and widths based on K $\mu-0.19$, $r_{s}{ }^{\prime} p-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and/or trench widths
ORDINARY CLAY K $\mu^{\prime}-\mathbf{0 . 1 3 0}$

	(0							
	¢ c							
	¢				8 8 7 7			
	i			$\stackrel{\square}{\sim}$				$\begin{array}{\|l\|l\|} \hline 880 & 0 \\ \hline & 0 \\ \hline \end{array}$
	-		- ${ }^{\circ}$	ONOM N				
	-			$$				$\begin{aligned} & 08088 \\ & 08 \% \\ & 0.8 \\ & 0 \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { بo } \\ & \text { in } \end{aligned}$							
	io		\mid		$\left\|\begin{array}{llll} \infty & N & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 \end{array}\right\|$			
	-						$\left\lvert\, \begin{array}{lllll} 0 & 1 & - & 9 & n \\ 0 & 0 & 0 & 8 \\ \vdots & 0 & 0 \\ 0 & 0 & n \\ 0 \end{array}\right.$	$\begin{array}{\|llll\|} n & 0 & - & 0 \\ \infty & 0 & 0 \\ 0 & 8 & 8 & 0 \\ 0 & 0 \end{array}$
	-							$\begin{array}{\|lllll} \hline & \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ h \end{array}$

Table B-10

Table B-10 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

SATURATED CLAY K $\mu^{\prime}-\mathbf{0 . 1 1 0}$										
TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \\ & \hline \end{aligned}$
$4^{\prime}-0^{\prime \prime}$	4'-6"	5'0"	5'-6"	6'-0"	6'-6"	7'0"	7'-6"	8'0"	9'-0'	
1748	1996	2119								4'-9'
2044	2340	2636	2686							5'- 1"
2323	2667	3012	3155							5'- 2"
2588	2979	3371	3620							5'- 4'
2839	3276	3715	4085							5'- 5"'
3076	3559	4045	4551							5'-6"
3301	3828	4360	4894	5015						5'-7"
3513	4085	4661	5241	5478						5'- 8'
3714	4329	4950	5575	5938						5'-9'
3905	4562	5226	5895	6401						5'-10''
4085	4783	5490	6203	6862						6'-0'
4256	4994	5743	6499	7262	7330					6'- ${ }^{\prime \prime}$
4417	5195	5985	6784	7590	7791					6'- 1'
4570	5386	6216	7057	7906	8250					6'-2"
4714	5568	6438	7319	8210	8711					6'- 3'
4851	5742	6650	7571	8504	9179					6'-4'
4981	5907	6853	7813	8787	9643					6'- 5'
5104	6064	7047	8046	9059	10110					6'- 6"
5220	6214	7233	8270	9322	10390	10570				6'- 7' ${ }^{\prime \prime}$
5329	6357	7410	8485	9576	10680	11020				6'- 8'
5433	6493	7581	8691	9820	10960	11500				6'-9"
5532	6622	7743	8889	10060	11240	11960				6'-10'
5625	6745	7899	9080	10280	11500	12400				6'-10"
5713	6863	8048	9263	10500	11760	12860				6'-11"
5797	6974	8191	9439	10710	12010	13340				7'-0'
5876	7081	8328	9608	10920	12250	13600	13810			7'-1"
5950	7182	8458	9770	11110	12480	13860	14270			7'-2"
6021	7278	8583	9926	11300	12700	14120	14710			7'-2"
6088	7370	8703	10080	11480	12920	14380	15180			7'- 3'
6151	7458	8817	10220	11660	13130	14620	15640			7'-4'
6211	7541	8927	10360	11830	13330	14860	16140			7'- 5"
6268	7620	9032	10490	11990	13530	15090	16570			7' - 6"
6322	7696	9132	10620	12150	13720	15310	17050			7'-6"
6373	7768	9228	10740	12300	13900	15520	17180	17520		7'-7"
6421	7836	9320	10860	12450	14070	15730	17420	17980		7'- 8"
6466	7902	9408	10970	12590	14240	15940	17660	18430		7'-8'

[^9]| 交 2 | |
 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \vdots
 | | | | | | | |
| | - | | | | | | | |
| | - | | | | 8
 0
 1
 7 | $\begin{array}{ll} \hline 88 & 8 \\ \hline 10 \\ \hline 10 \\ \hline \end{array}$ | $\left[\begin{array}{ccc} 08 & 8 & 8 \\ \text { N } & 8 \\ \text { G } & 0 \\ \hline \end{array}\right.$ | |
| | - | | | $\stackrel{9}{5}$ | $\begin{aligned} & \text { 응옹앙 } \\ & 0 \\ & 0 \end{aligned}$ | | | $\begin{aligned} & 8.80 \\ & \hline \text { O } \\ & \hline 0 \\ & \hline \end{aligned}$ |
| | | | $\begin{aligned} & \bar{\circ} \\ & \hline \\ & \hline \end{aligned}$ | | | $\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$ | | |
| | $\left\lvert\, \begin{aligned} & 6 \\ & 9 \\ & \hline 0 \end{aligned}\right.$ | $\begin{array}{ll} n & \bar{n} \\ 0 \\ \hline 8 & i n \\ \hline 8 \end{array}$ | | | | | | |
| | $\begin{gathered} 0 \\ \varphi \\ i n \\ i n \end{gathered}$ | | | | | | 守 | |
| | - 0 | | | | $\left\|\begin{array}{lllll} \infty & 0 & 0 & \boxed{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 8 \\ 0 \end{array}\right\|$ | | | |
| | - | | | | | | $\begin{array}{lllll} \hline & N & - & 0 & n \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$ | $\begin{array}{\|llll} 10 & 0 & - & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$ |
| | \% | | | | | | | |
|
 | | | | | | | | |

Table B-11

Table B-11 Continued
SATURATED CLAY K ${ }^{\prime}-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET 								
	-							
	¢							808 N
	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$							
	-						$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 \\ i n & 0 & 0 \\ 0 & 0 & 0 & 4 \\ & 0 & 0 \end{array}\right.$	
	i							
	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$							
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$							
	$\begin{array}{\|c} \hline \\ \hline \\ \text { is } \end{array}$				$\left\lvert\, \begin{array}{lllll} m & 0 & 0 & n & - \\ \infty & 0 & 0 & 0 \\ & \infty & \infty & \infty & 0 \\ \hline \end{array}\right.$	$\begin{array}{llll} 0 & 0 & 9 & \infty \\ 0 \\ 0 & 6 \\ 0 & 0 \\ \hline \end{array}$	$\left\|\begin{array}{llll} 9 & 0 & 8 & 8 \\ \hline \end{array}\right\|$	
	$\left\|\begin{array}{c} 0 \\ i \\ \text { in } \end{array}\right\|$							
	$\left\|\begin{array}{c} \varphi_{0} \\ -1 \\ -1 \end{array}\right\|$	$\left.\begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline \end{array}\right)$						

* For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
ATransition loads (bold type) and widths based on $K \mu-0.19$, $r_{\text {sd }}$ p- 0.5 in the embankment equation Interpolate for intermediate heights of backfill and/or trench widths

Table B－12

A	SAND AND GRAVEL $K \mu^{\prime}-0.165$											B	LOA	$\begin{array}{r} \text { SIN } \\ \text { SAT } \\ \hline \end{array}$	$\begin{aligned} & \text { UND } \\ & \text { ZATE } \end{aligned}$	TO	SO	ON OOT $K \mu '$		－		$36^{\prime \prime}$	
			TREN	NCH W	IDTH	AT TOP	OP OF	PIPE						TREN	NCH W	IDTH	AT T	OP OF	PIPE			ITRAN－	
	5＇－0＂	5＇6＂	6＇－0＂	6＇－6＂	7＇0＂	7＇－6＂	8．0＂	8－6＂	9－0＂	10＇0＂		5－0＂	5＇－6＂	6＇0＂	6＇6＂	7－0＂	7－6＂	8－0＂	8＇－6＂	9＇－0＂	10＇－0＂	SITION WIDTH	
5	2129	2375	2394								5＇－7＇	2159	2394									5＇－6＂	5
6	2477	2771	3038								5＇11＇	2519	2814	3038								5＇11＇	6
7	2802	3143	3485	3730							6．${ }^{\text {c／}}$	2857	3200	3543	3730							6＇－3＇	7
－	3107	3494	3883	4289							$6^{6}-6^{\prime \prime}$	3176	3565	3956	4289							6＇－5＂	8
－ $\begin{array}{r}9 \\ 10\end{array}$	3393 3660	3824 4135	4259 4615	4695 5097	$\begin{aligned} & 4846 \\ & 5401 \end{aligned}$						6．-8 $\mathrm{C}^{\prime}-10^{\prime \prime}$ 6.11	3477 3759	3911 4239	4348 4721	4787 5206	4846 5401						6＇－${ }^{\prime \prime}$	9
山 11	3910	4428	4951	5478	5952						6．11＇	4026	4549	5076	5606	5952						6＇8＇${ }^{\prime \prime}$	10 自
L 12	4144	4704	5270	5841	6415	6508					7＇－1＂	4277	4843	5414	5989	6508						6＇－11＇	$\begin{aligned} & 11 \overline{\boxed{O}} \\ & 12 \end{aligned}$
แ13	4363	4964	5572	6185	6803	7060					7－3＂	4513	5121	5735	6354	6976	7060					7＇－1＂	13 －
늠 14	4568	5209	5858	6513	7174	7609					7＇－4＇	4735	5384	6040	67702	7369	7609					7＇．${ }^{\prime \prime}$	140
－ 15	4760	5439	6128	6824	7527	8160					7＇－${ }^{\prime \prime}$	4945	5634	6334	7035	7745	8160					7＇－3＂	15
\bigcirc	4940	5656	6384	7120	7864	8614	8717				7． 7	5142	5870	6608	7353	8105	8717					7＇－${ }^{\prime \prime}$	16 号
ㅁ． 17	5108	5861	6626	7401	8186	8977	9261				7．8	5328	6094	6871	7657	8450	9261					7＇－6＇	17 号
ㅇ 18	5266	6053	6855	7669	8492	9324	9817 10370				7－9	5503	6305	7121	7947	8781	9623	9817				7＇－7＂	18 त
山 20	5552	6405	7277	8164	8785 9064	9675	10370 10930				7－11＇${ }^{\text {8．}}$－	5668 5823	6506	7359 7585	8223	9098 9401	9981	$\left\|\begin{array}{l} 10370 \\ 10930 \end{array}\right\|$				7＇－8＂	19 끌
○ 21	5681	6566	7472	8394	9331	10280	11240	11470			8．${ }^{\prime \prime}$	5969	6876	7800	8740	9692	10660	11470				7＇11＂	20 \square 21
¢ 22	5802	6717	7656	8612	9585	10570	11570	12030			8－3＇	6107	7046	8005	2981	9971	10970	12030				8＇－ 0	22 エ
＜ 23	5915	6860	7830	8820	9827	10850	11880	12580			8． $\mathbf{4}^{\prime \prime}$	6236	7207	8200	Q211	10240	11280	12330	12580			8＇－1＂	23 8
エ 24	6021	6994	7994	9017	10060	11120	12190	13120			8． 5	6358	7360	8385	9431	10490	11570	12660	13120			8＇－3＂	24 O
－ 25	6120	7121	8150	9204	10280	11370	12480	13670			8． 6	6473	7504	8561	9641	10740	11850	12980	13670			8＇－3＂	25 而
른 26	6213	7240	8298	9382	10490	11620	12760	13920	14240		8＇－ 8	6582	7641	8729	9841	10970	12120	13290	14240			8＇－${ }^{\prime \prime}$	26 m
$\frac{\stackrel{1}{y}}{4}$	6300	7352	8438	9552	10690	11850	13030	14220	14790		8－9＂	6684	7771	8889	10030	11200	12380	13580	14790			8＇－6＂	27 －
¢ 28	6382	7458	8570	9713	10880	12070	13280	14510	15350		8－10＇	6780	7893	9040	19220	11410	12630	13870	15120	15350		8＇－7＇	28 0
${ }_{0}^{4} 29$	6458	7557	8695	9866	11060	12290	13530	14790	15890		$8{ }^{81}$	6870	8010	9185	10390	11620	12870	14140	15430	15890		8＇－ $8^{\prime \prime}$	290
－ 30	6529	7651	8814	10010	11240	12490	13770	15060	16450		9． $0^{\prime \prime}$	6955	8120	9322	11560	11820	13100	14410	15730	16450		8＇－9＂	307
$\bigcirc 31$	6596	7739	8926	10150	11400	12690	13990	15320	16670	16990	9－1＂	7036	8224	9453	10,720	12010	13320	14660	16020	16990		8＇10＇	31 끔
$\vdash 32$	6659	7822	9032	10280	11560	12880	14210	15570	16950	17520	9＇－${ }^{\prime \prime}$	7111	8323	9577	10870	12190	13540	14910	16300	17520		8＇11＂	32 m
I 33	6717	7901	9132	10400	11710	13060	14420	15810	17230	18080	9＇－${ }^{\text {＂}}$	7182	8416	9695	11.010	12360	13740	15140	16570	18080		9＇－ 0	33 －
－ 34	6772	7974	9227	10520	11860	13230	14620	16040	17490	18620	9＇－5＂	7249	8505	9807	11150	12530	13940	15370	16830	18310	18620	9＇－1＂	34 T
耑 35	6823	8044	9317	10640	12000	13390	14820	16270	17740	19190	9－6＂	7312	8588	9914	$11: 280$	12690	14130	15590	17080	18590	19190	9＇－${ }^{\prime \prime}$	35 m
I 36	6871	8109	9402	10740	12130	13550	15000	16480	17990	19750	9．7＂	7372	8668	10020	11410	12840	14310	15800	17320	18870	19750	9＇－3＇	$36-1$
37	6916	8171	9483	10850	12250	13700	15180	16690	18220	20300	9＇－8＂	7428	8743	10110	11530	12990	14480	16010	17560	19130	20300	9＇－${ }^{\prime \prime}$	37
38	6958	8229	9559	10940	12370	13840	15350	16890	18450	20840	9－9＂	7480	8814	10200	11640	13130	14650	16210	17780	19390	20840	9＇5＂	38
39	6998	8283	9631	11040	12490	13980	15510	17080	18670	21370	9＇－10＂	7530	8881	10290	11760	13260	14810	16390	18000	19640	21370	9＇． 6 ＂	39
40	7035	8335	9700	11120	12600	14110	15670	17260	18880	21940	$9^{\prime}-11^{\prime \prime}$	7577	8945	10380	11860	13390	14960	16570	18210	19880	21940	9＇－7＇	40

Table B-12 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

[^10]ORDINARY CLAY K $\mu^{\prime}-0.130$

	\|lor						웅
	\% 0 \vdots						
	¢ 0 0				$\begin{array}{llll} \hline 9 & 9 & 0 & 0 \\ N & 0 \\ N & 0 \\ \hline \end{array}$	$\begin{array}{lll} \hline \hline 8 & 8 & 0 \\ \hline \end{array}$	$\begin{array}{llll} 0 & 0 & 9 & 0 \\ N_{2} & 0 & 8 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$
	$\begin{aligned} & 9 \\ & 9 \\ & \infty \end{aligned}$		응			$\left\|\begin{array}{lllll} \hline & 0 & 0 & 0 & 0 \\ 0 & \circ & 0 & 0 & N \\ 0 & 0 & 0 & 0 \\ & \underline{0} & 0 \end{array}\right\|$	$\begin{array}{ll} \hline 0 & 0 \\ \hline \end{array} 0_{0} 0$
	-		$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \hline \infty \\ & \hline 1 \end{aligned}$			$\begin{array}{llll} \circ & 0 & 0 & 0 \\ \hline \end{array}$	
	-i				$\begin{array}{llll} 0 & 0 & \hline & 0 \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{llll} \hline & 9 & 0 & 0 \\ \hline \end{array}\right.\right)$	$\begin{array}{llll} \hline 8 & 0 & 0 & 0 \\ \hline \end{array}$
	(
	-						
	魚	$\begin{array}{\|l\|l\|l\|} \hline W_{N}^{\prime N} & \text { N } \\ \hline \end{array}$					
	in						

Table B－13

A	SAND AND				BACKFILL LOADS ON CIRCULAR PIPE IN TRENCH INSTALLATION ＊ 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL GRAVEL $K \mu \mu^{\prime}-0.165$ LOADS IN POUNDS PER LINEAR FOOT SATURATED TOP SOIL $K \mu \prime-0.150$																		
	TRENCH WIDTH AT TOP OF PIPE										$\triangle T R A N-$ SITION WIDTH	TRENCH WIDTH AT TOP OF PIPE										$\left\|\begin{array}{c}\text { ATRAN－} \\ \text { SITION } \\ \text { WIDTH }\end{array}\right\|$	
	6＇－0＂	6＇6＂	7＇0＂	7＇－6＂	8＇－0＂	8－6＂	9＇0＂	9＇－6＂	10＇0＂	11－0＂		6＇0＂	6＇－6＂	7－0＂	7＇6＂	8－0＂	8＇－6＂	$9^{\prime}-0^{\prime \prime}$	$9{ }^{\text {9－6＂}}$	$10^{\circ}-0^{\prime \prime}$	11＇－0＂		
5	2622	2671									6＇－1＂	2671										6＇－0＇	5
6	3066	3361									6＇－6＂	3110	3361									6＇－5＂	6
7	3485	3829	4114								6＇11＂	3543	3888	4114								6＇－10＂	7
8	3883	4273	4665	4932							7＇－4＂	3956	4348	4740	4932							7－3＂	8
9	4259	4695	5134	5582							7＇ $\mathbf{6}^{\prime \prime}$	4348	4787	5227	5582							7＇－5＂	9
ш 10	4615	5097	5581	6067	6227						7＇－8＂	4721	5206	5693	6181	6227						7＇－7＇	$10 \frac{1}{\text { m }}$
山 11	4951	5478	6008	6540	6869						7＇－10＂	5076	5606	6139	6674	6869						7＇－8＂	$11 \frac{\square}{0}$
	5270	5841	6415	6992	7510						7＇－11＇	5414	5989	6567	7147	7510						7＇10＂	12 T
ய゙13	5572	6185	6803	7425	8049	8150					8＇－1＂${ }^{\prime \prime}$	5735	6354	6976	7602	8150						7＇－11＂	13 －
흠 14	5858	6513	7174	7839	8508	8789					8＇－2＂	6040	6702	7369	8039	8789						8＇－0＂	14 O
	6128	6824	7527	8235	8948	9434					8＇－4＂	6331	7035	7745	8459	9177	9434					8＇－2＂	15 T
\bigcirc	6384	7120	7864	8614	9370	10070					8＇－6＂＇	6608	7353	8105	8863	9625	10070					8＇－3＂	16 署
－ 17	6626	7401	8186	8977	9775	10580	10710				8＇－7＂	6871	7657	8450	9250	10060	10710					8＇－5＇	17 万
O 18	6855	7669	8492	9324	10160	11010	11350				8＇－8＇	7121	7947	8781	9623	10470	11350					8＇－6＂	18 त
ㄴ 19	7072	7923	8785	9657	10540	11420	11980				8＇－10＂	7359	8223	9098	9981	10870	11770	11980				8＇－ $8^{\prime \prime}$	19 끌
Ш20	7277	8164	9064	9975	10890	11820	12630				8＇－11＂	7585	8488	9401	10320	11260	12190	12630				8＇－9＂	20 F
$\bigcirc 21$	7472	8394	9331	10280	11240	12200	13180	13270			9＇－1＂	7800	8740	9692	10660	11630	12610	13270				8＇－10＂	21 エ
¢ 22	7656	8612	9585	10570	11570	12570	13590	13900			9＇－${ }^{\prime \prime}$	8005	8981	9971	10970	11980	13000	13900				8＇－11＂	22 〕
『 23	7830	8820	9827	10850	11880	12930	13980	14550			9＇－3＇	8200	9211	10240	11280	12330	13390	14460	14550			9＇－1＂	23 号
I 24	7994	9017	10060	11120	12190	13270	14360	15190			9＇－4＂	8385	9431	10490	11570	12660	13760	14870	15190			9＇－2＂	24 O
－25	8150	9204	10280	11370	12480	13600	14730	15830			9＇－6＂	8561	9641	10740	11850	12980	14120	15260	15830			9－3＂	25 m
少 26	8298	9382	10490	11620	12760	13920	15080	16260	16470		9＇－7＇	8729	9841	10970	12120	13290	14460	15650	16470			9＇－4＂	26
妾 27	8438	9552	10690	11850	13030	14220	15420	16640	17090		9＇－8＇	8889	10030	11200	12380	13580	14800	16020	17090			9＇－5＂	27 O－
U 28	8570	9713	10880	12070	13280	14510	15750	17010	17740		9＇－9＂	9040	10220	11410	12630	13870	15120	16380	17740			9＇－6＂	28 O
苗 29	8695	9866	11060	12290	13530	14790	16070	17360	18380		9＇－11＂	9185	10390	11620	12870	14140	15430	16730	18040	18380		9＇－8＂	29 O
${ }_{4} 30$	8814	10010	11240	12490	13770	15060	16370	17700	19000		10＇－0＂	9322	10560	11820	13100	14410	15730	17070	18420	19000		9＇－9＂	307
\bigcirc	8926	10150	11400	12690	13990	15320	16670	18030	19410	19670	10＇－1＂	9453	10720	12010	13320	14660	16020	17390	18780	19670		9＇10＂	31 D
ㄷ 32	9032	10280	11560	12880	14210	15570	16950	18350	19760	20280	10＇－2＂	9577	10870	12190	13540	14910	16300	17710	19130	20280		9＇11＂	32 m
I 33	9132	10400	11710	13060	14420	15810	17230	18660	20100	20920	10＇－${ }^{\prime \prime}$	9695	11010	12360	13740	15140	16570	18010	19470	20920		10＇－ $0^{\prime \prime}$	33 －
¢ 34	9227	10520	11860	13230	14620	16040	17490	18950	20440	21540	10＇－4＂	9807	11150	12530	13940	15370	16830	18310	19800	21310	21540	10＇－1＂	34 m
Ш 35	9317	10640	12000	13390	14820	16270	17740	19240	20760	22190	10＇－ $5^{\prime \prime}$	9914	11280	12690	14130	15590	17080	18590	20120	21670	22190	10＇－2＂	35 m
工 36	9402	10740	12130	13550	15000	16480	17990	19520	21060	22830	10＇－ $7^{\prime \prime}$	10020	11410	12840	14310	15800	17320	18870	20430	22010	22830	10＇－3＂	36
37	9483	10850	12250	13700	15180	16690	18220	19780	21360	23500	10＇－ $8^{\prime \prime}$	10110	11530	12990	14480	16010	17560	19130	20730	22350	23500	10＇－4＂	37
38	9559	10940	12370	13840	15350	16890	18450	20040	21660	24110	10＇－ $\mathbf{9}^{\prime \prime}$	10200	11640	13130	14650	16200	17780	19390	21020	22670	24110	10＇－5＂	38
39	9631 9700	11040 11120	12490 12600	13980	15510 15670	17080 17260	18670	20290	21940	24760 25400	10＇10＂	10290	11760 11860	13260	14810	16390	18000	19640	21300	22990	24760	10＇－ $\mathbf{6}^{\prime \prime}$	39
40	9700	11120	12600	14110	15670	17260	18880	20530	22210	25400	10＇－11＇	10380	11860	13390	14960	16570	18210	19880	21580	23290	2540	10＇－7＇	40

Table B-13 Continued
D

		HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET 						
	-i							
	-							\% 8
	¢							
	$\begin{aligned} & i \\ & i \end{aligned}$							
	$\begin{aligned} & \dot{y} \\ & 0 \\ & \infty \\ & \hline \end{aligned}$:				
	$1 \begin{aligned} & \dot{9} \\ & \infty \\ & \infty \end{aligned}$		$\underset{\infty}{\infty}$					
	¢ i i	ON						
	i						$\begin{array}{\|l\|} \hline 0.0 \\ \hline \end{array}$	
	\%							

[^11]
Table B-14

Table B-14 Continued
ORDINARY CLAY $\mathrm{K}^{\prime} \mu \mu^{\prime}-0.130$

	の玄	 						
TRENCH WIDTH AT TOP OF PIPE	-							-
	¢							
	-1						$\begin{gathered} 0.0 \\ N \\ N \\ N \\ N \end{gathered}$	
	-							
	-							
	(¢						
	(
	¢							
	i							
	¢							

[^12]
Table B－15

A					BACKFILL LOAD ＊ 100 POUNDS PER CUB GRAVEL $K \mu^{\prime}-0.165$ IDTH AT TOP OF PIPE						KFILL MA	L_{B}	LOA	S IN PO SATU	RATED	D TOP	SOIL	ION FOOT K ${ }^{\prime}$－	－0．150			$54^{\prime \prime}$	
	TRENCH WIDTH AT TOP OF PIPE										TTRAN－SITION WIDTH	TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { STION } \\ & \text { WIDTH } \end{aligned}$	
	7－0＂	7－6＂	$8^{\prime} 0^{\prime \prime}$	$8^{\prime} 6^{\prime \prime}$	$9{ }^{\text {9 }}$－${ }^{\text {a }}$	$9{ }^{9-6 "}$	10＇0＇	11－0＂	12－0＂	13－0＂		7－0＂	7－6＂	8－0＂	8－6＂	$9{ }^{9}-01$	9＇－6＂	10－0＂	11＇－0＂	$12^{1-0 "}$	13－0＂		
	3118	3238									7＇3＂	3150										7＇－2＇1	
6	3658	3954	4030								7．${ }^{\prime \prime}$	3703	4000	4030								7＇ $\mathbf{7}^{\prime \prime}$	6
7	$\begin{aligned} & 4173 \\ & 4665 \end{aligned}$	4518 5057	$\begin{aligned} & 4880 \\ & 5451 \end{aligned}$	5790								4233 4740	4579 5134	4880 5529								7＇－11＇	7
	5134	5573	6014	6456	6765						${ }^{8.10 "}$	5		6110	6554	6765						8． $9^{\prime \prime}$	8
出 10	5581	6067	6555	7044	7534	7809					9＇3＂${ }^{\prime \prime}$	5693	6181	6671	7161	7653	7809					9＇－ $2^{\prime \prime}$	
岀 11	6415	6540	7074	7609	8146	${ }^{8683}$					9－ $\mathbf{6}^{\prime \prime}$	6139	${ }^{6674}$	7210	7748	8287	8683					$9^{\text {9＇－}} \mathbf{4}^{\prime \prime}$	
［12	6415 6803	${ }^{6992}$	7571 8049	8153 8676	${ }_{9306}^{8737}$	9322	9507				9＇－ $8^{\prime \prime}$	6567	7147	7730	8315	8901	9507					9＇． $\mathbf{6}^{\prime \prime}$	
O－14	7114	7839	8508	9180	9855	10530	11150				9－11＂	${ }^{6969} 7$	7602 8039	88713	8862 9389	${ }_{10070}^{9494}$	10750	11150				9．－9＇	
a 15	7527	8235	8948	9664	10380	11110	11830	11970			10＇ $1^{\prime \prime}$	7745	8459	9177	9899	10620	11350	11970				$9^{\prime}-11^{\prime \prime}$	14
$\stackrel{16}{\circ}$	7864	8614	9370	10130	10890	11660	12430	${ }^{12780}$			10＇－3＇	8105	8863	9625	10390	11160	11930	12710	12780			10＇${ }^{\prime \prime}$	
	8186	8977	9775	10580	11380	12200	13010	13600			10＇－${ }^{\prime \prime}$	8450	9250	10060	10870	11680	12500	13320	13600			10． $2^{\prime \prime}$	
＋18	8492	9324	10160	11010	1860	12710	13570	14420			10＇${ }^{\text {c }}$＂＇	8781	9623	10470	11320	12180	13040	13910	14420			10，4＂	
\circ	8785 9064	9657	10540	11420	12320	13210	14120	15230			10＇－7＂	9098	9981	10870	11770	12670	13570	14480	15230			10． $5^{\prime \prime}$	
¢ 20		9975	10890	11820	12760	13700	14640	16050			10＇－9＂	9401	10320	11260	12190	13140	14090	15040	16050			10＇ $6^{\prime \prime}$	
O 21	${ }^{9331}$	102870	11240	12200	13180	14160	15150	16860			10＂－10＂	9692	10660	11630	12610	13590	14580	，				${ }^{10^{-} 8^{\prime \prime}}$	
\％${ }_{\text {\％}} 22$	9585	10570	11570	12570	13590	14610	15640	17680			11＇${ }^{\text {a＇}}$	9971	10970	11980	13000	14030	15060	16100	17680			10＇${ }^{\prime \prime}$	
工 24	9827	11120	11880 12190	129370	14360	150570	16120 16580	18882	1849810		11－． $1^{\prime \prime}$	10240 10490	111280	126380	13390 13760	$\left\lvert\, \begin{aligned} & 14460 \\ & 14870\end{aligned}\right.$	15530 15980	16610	18490 19310			10＇10＂	
${ }^{\text {」 }} 25$	10280	11370	12480	13600	14730	15870	17020	19350	20120		11－ $4^{\prime \prime}$	10740	11850	12980	14120	15260	16420	17590	19940	20120		11＇－1＂	
근 26	490	1620	12760	9920	15080	16260	17450	19860	20930		11． $5^{\prime \prime}$	10970	12120	13290	14460	15650	16850	18050	20480	20930		11＇－2＂	
	10690	11850	13030	14220	15420	16640	17870	20360	21750		11－7＂	11200	12380	13580	14800	16020	17260	18500	21020	21750		11＇．3＂	
－ 28	10880	12070	13280	14510	15750	17010	18270	20840	2258		11． $8^{\prime \prime}$	11410	12630	13870	15120	16380	17660	18940	21540	22580		11－5 ${ }^{\text {c }}$	28 O
0	11060	12290	13530	14790	16070	17360	18660	21300	23380		11＇${ }^{\text {c／}}{ }^{\prime \prime}$	1.1620	12870	14140	15430	16730	18040	19370	22040	23380		111 $6^{\prime \prime}$	29 O
－ 31	$\frac{11240}{11400}$	${ }^{12490}$	13770	15060	16370	17803	19040	21760	24190			$\frac{11820}{12010}$	13100	14410	15730	17070	18420	19780	22540	2490		11．${ }^{11^{\circ} .}$	
－ 32	11560	12880	14210	15570	16950	18350	19760	22630	25540	25840	12－${ }^{\prime \prime}$	12190	13540	14910	16300	17710	19130	20570	23480	25840		11＇－9＂	
	11710	13060	14420	15810	17230	18660	20100	23040	26030	26650	12－3＂	12360	13740	15140	16570	18010	19470	20950	23940	26650		11－11＂	
\bigcirc	11860	13230	14620	16040	17490	18950	20440	23440	26500	27440	12＇－3＂	12530	13940	15370	16830	18310	19800	21310	24380	2740		12＇0 ${ }^{\prime \prime}$	
㜽35	$\frac{12000}{12130}$	13390	14820	16270	17740	19240	20760	23840	26970	28250	12＇ $5^{\prime \prime}$	12690	14130	15590	17080	18590	20120	21670	24800	27990		12＇－1＂	
37	12250	13700	15180	16690	18220	19780	21360	24580	27860	29090		12840	14488	（18800	17320 17560	$\left\lvert\, \begin{aligned} & 18870 \\ & 19130\end{aligned}\right.$	20730	22350	25630	28970	29910	12＇3＂	37
38	12370	13840	15350	16890	18450	20040	21660	24940	28290	30720	12＇． ＂＇$^{\prime \prime}$	13130	14650	16200	17780	19390	21020	22670	26020	29440	3072	12． 4	38
39	12490	13980	15510	17080	18670	20290	21940	25290	28710	31500	12＇10＂	13260	14810	16390	18000	19640	21300	22990	26410	29890	31500	12＇－${ }^{\prime \prime}$	39
40	12600	14110	1567			20530	22210	256	29110	323	12＇－11＂	13390	14960	16570	18210	19880				30340		12＇－7	40

Table B-15 Continued
SATURATED CLAY K $\mu^{\prime}-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET 									
	\|l								
	1 0 1 \sim						윤		
	$\stackrel{\square}{9}$								
	-								
	$\begin{aligned} & i \\ & \dot{0} \\ & \dot{\sigma} \end{aligned}$								
	$\begin{aligned} & 6 \\ & \vdots \\ & \vdots \end{aligned}$								
	$\begin{aligned} & \overline{0} \\ & \varphi_{1} \\ & i \end{aligned}$	$\begin{array}{lll} \hline 8 & \boxed{2} \\ \hline & 0 \\ \underset{N}{0} & 0 \\ \hline \end{array}$		$\left\lvert\, \begin{array}{lll} 88 & 9 & 8 \\ \hline \end{array}\right.$				$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ \text { N } \\ \text { N } \\ \hline & 0 \\ \hline \end{array}\right.$	
	$\begin{gathered} 0 \\ 0 \\ \infty \\ \infty \end{gathered}$								
	i i i								
	¢	$\begin{aligned} & \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$							

* For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
A Transition loads (bold type) and widths based on $K \mu-0.19, r_{s d} p-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and/or trench widths
ORDINARY CLAY $K \mu^{\prime}-0.130$

	-						M N ले
	-				¢ N Ñ		
	$\stackrel{+}{\circ}$						$\begin{array}{llll} \hline 8 & 0 & 0 & 0 \\ \hline \end{array}$
	-						
	¢			$\begin{array}{llll} \hline R & 8 & 0 & 0 \\ \hline \end{array}$			
	io						
	($\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0_{2} & 8 & 8 & 0 \\ 0 & 0 & 0 \\ 0 & \infty & 0 & 0 \\ \hline \end{array}$
	($\begin{array}{llll} 0 \\ 0 & \sim \\ \sim \\ \hline \end{array}$	$\begin{array}{lll\|llll} \hline 0 & 0 & 0 & \infty & \hat{c} & 0 & 8 \\ \hline \end{array}$				
	¢			$\left.\begin{array}{llll} \hline 8 & O & 8 & 0 \\ \hline \end{array} \right\rvert\,$			$\begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 \\ w & 0 \\ \hline \end{array}$
	-						$\begin{array}{lll} \hline 8 & 0 & 0 \\ \hline \end{array}$

Table B-16

Table B－16 Continued

	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ SITION
	8＇－0＇	8＇－6＂	9＇－0＂	9＇－6＂	10＇0＇	10＇6＂	11＇－0＇	12＇0＇${ }^{\prime \prime}$	13＇－0＇	14＇－0＇	
5	3522										7＇－8＇
6	4368										8＇－ $0^{\prime \prime}$
7	5008	5268									8＇－${ }^{\prime \prime}$
8	5635	6031	6226								8＇－9＂
9	6242	6687	7132	7246							9＇－ $\mathbf{1}^{\prime \prime}$
Ш10	6830	7323	7816	8331							9＇－6＂
山 11	7398	7939	8481	9023	9486						9＇－11＇
ㄴ． 12	7949	8537	9126	9717	10310	10480					10＇－${ }^{\prime \prime}$
山 13	8482	9117	9754	10390	11030	11390					10＇－${ }^{\prime \prime}$
느N	8998	9679	10360	11050	11730	12300					10＇－5＇
ㄴ． 15	9497	10220	10960	11690	12420	13210					10＇－6＂
－16	9981	10750	11530	12310	13090	13870	14120				10＇－8＇
－17	10450	11270	12090	12910	13740	14570	15020				10＇－10＂
O 18	10900	11760	12630	13500	14370	15250	15930				10＇－11＂
19	11340	12250	13160	14070	14990	15910	16830				11－ $0^{\prime \prime}$
Ш 20	11760	12720	13670	14630	15600	16560	17530	17740			11＇－${ }^{\prime \prime}$
$\bigcirc 21$	12180	13170	14170	15170	16180	17190	18210	18640			11＇－${ }^{\prime \prime}$
m 22	12570	13610	14650	15700	16750	17810	18870	19540			11＇－4＂
<23	12960	14040	15120	16210	17310	18410	19520	20440			11＇－5＂
I 24	13330	14450	15580	16710	17850	19000	20150	21340			11＇－6＂
－ 25	13690	14850	16020	17200	18380	19570	20760	22240			11＇－7＂
ㄱ 26	14040	15240	16450	17670	18900	20130	21370	23150			11＇： $8^{\prime \prime}$
צ 27	14380	15620	16870	18130	19400	20670	21950	24060			11＇－10＂
$\bigcirc 28$	14710	15990	17280	18580	19890	21200	22530	24960			11＇－11＂
¢ 29	15020	16340	17670	19020	20370	21720	23090	25860			12＇－0＂
－ 30	15330	16690	18060	19440	20830	22230	23640	26470	26760		12＇－1＂
$\bigcirc 31$	15630	17020	18430	19850	21280	22720	24170	27090	27680		12－2＂
132	15910	17350	18790	20250	21720	23200	24690	27700	28560		12＇－4＇
I 33	16190	17660	19140	20640	22150	23670	25200	28290	29460		12＇－5＇
\bigcirc	16460	17970	19490	21020	22570	24130	25700	28870	30380		12＇－6＇
Ш 35	16720	18260	19820	21390	22980	24580	26190	29440	31270		12＇－7＂
工 36	16980	18550	20140	21750	23380	25020	26660	30000	32140		12＇－8＂
37	17220	18830	20460	22100	23760	25440	27130	30540	33090		12＇－9＂
38	17460	19100	20760	22440	24140	25860	27580	31070	33970		12＇－10＂
39	17680	19360	21060	22770	24510	26260	28020	31590	34880		12＇－11＂
40	17910	19610	21340	23100	24870	26660	28460	32100	35770		13＇－ 0 ＂

＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foo
Aransition loads（bold type）and wioths based on K $\mu-0.19$ ，$r_{\text {sdd }} \rho-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and／or trench widths

Table B-17

Table B-17 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

	3	 						
	[
	-							$\begin{aligned} & \text { O } 9 \text { 옹 } \\ & N \\ & \text { N } \\ & \\ & \\ & \hline \end{aligned}$
	[
	-				$\begin{array}{llll} \hline 0 & 9 & 0 & 0 \\ \hline & 0 & 0 \\ \hline \end{array}$	$$		$\left\lvert\, \begin{aligned} & 0 \\ & \hline \end{aligned} 0\right.$
	迷				$\begin{array}{\|llll} 8 & 0 & 0 & 0 \\ \hline & 0 \\ \hline & 0 \\ \hline \end{array}$			
	$\frac{1}{9}$				$\begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$			
	-				$\begin{array}{llll\|} \hline 9 & 0 & 0 & 8 \\ \hline \end{array}$			$\left\lvert\, \begin{array}{lll} \hline 0 & 0 & 0 \\ \hline \end{array}\right.$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{llll} \hline 8 & 8 & 0 & 0 \\ 0 & 0 \\ \hline \end{array}$				
	$\left\|\begin{array}{c} i \\ 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\begin{aligned} & \infty \stackrel{\sim}{\circ} \stackrel{\circ}{\sim} \\ & \hline \stackrel{\infty}{\infty} \\ & \infty \end{aligned}$				$\begin{array}{llll} 8 & 0 & 0 & 8 \\ \hline & 0 \\ 0 & 6 & 5 \\ \infty & 8 & 0 & 0 \\ \hline \end{array}$		$\begin{array}{llll} \hline 8 & 0 & 0 & 8 \\ \hline \end{array}$
	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$							

[^13]ORDINARY CLAY $K \mu^{\prime}-0.130$

	[10								
	-								
	¢								$\begin{array}{llll} \hline 0.8 & 0 & 8 & 8 \\ \hline \end{array}$
	$\stackrel{\text { ¢ }}{\substack{\text { a } \\ \sim \\ \sim}}$								$\left\lvert\, \begin{array}{lll} \hline 8 & 0 & 0 \\ \hline \end{array}\right.$
	¢							$\left\lvert\, \begin{array}{lll} \hline 0 & 0 & 0 \\ \hline \end{array}\right.$	
	-								$\left\lvert\, \begin{array}{lll} 0_{0} & 0 & 0 \\ \hline \end{array}\right.$
	-								
	-					$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \\ & \\ & \hline \end{aligned}$	$\begin{array}{llll} 8 & 8 & 8 \\ \hline & 0 \\ \hline \end{array}$		
	-								
	\|o					$\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ N & N \\ \hline \end{array}$			

Table B－18

A					BACKFILL LOADS ON CIRCULAR PIPE I ＊ 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL GRAVEL K ${ }^{\prime}-0.165$								IN TRENCH INSTALLATION loads in pounds per linear foot SATURATED TOP SOIL $K \mu^{\prime}-0.150$									$72^{\prime \prime}$	
	TRENCH WIDTH AT TOP OF PIPE										ATRAN－ WIDTH	TRENCH WIDTH AT TOP OF PIPE										$\begin{aligned} & \text { ATRAN- } \\ & \text { SITION } \\ & \text { WIDTH } \end{aligned}$	
	9＇6＂	$10^{\prime \prime} 0^{\prime \prime}$	10＇6＇	11－0＂	11－6＂	12＇0＂	13－0＂	－0．	15＇－0＇	16－0＂		9＇6＂	10＇0＂	10＇6＂	［11－0＂	11－6＂	$12^{\prime}{ }^{\prime \prime}$	$13^{\prime \prime} 0^{\prime \prime}$	$14^{1 /-0^{\prime \prime}}$	0			
	4097										9＇－${ }^{\prime \prime}$	40										8＇11＂	
	5053										9＇－4＂	5053										9－3	6
7	5903	6060									9＇－ $9^{\prime \prime}$	5966	6060									9＇－8＂	7
8	6635	7031	7121								10． $1^{\prime \prime}$		7121									10＇ $0^{\prime \prime}$	8
	7342 8025	7786 8517	8239 9010								$10 \cdot 6 \prime \prime$ $10.11^{\prime \prime}$ 10	7442 8146	$\begin{aligned} & 7887 \\ & 8639 \end{aligned}$	$\begin{aligned} & 8239 \\ & 9133 \end{aligned}$								－10＇－5＂	${ }_{10}^{9}$
出 10	8025	8517		$\underline{9417}$	10660						年－11＂			9133	10450	10660						10＇－${ }^{\text {1＂}}$	
4． 12	9322	9908	10500	11080	11670	11960					11－9＂${ }^{\prime \prime}$	9488	10080	10670	11260	11850	11960					11－ $7^{\prime \prime}$	12
道 13	9937	10570	11200	11840	12480	13120	13340				12＇－${ }^{\prime \prime}$	10130	10760	11400	12040	12680	13340					12＇－0＂	
¢ 14	10530	11210	11890	12570	13260		14590				12＇${ }^{\text {c／}}$	10750	11430	12120	12800	13490	14170					12＇－3＂	
	11660	12430	13200	13980	14750	15530	16780					11350	12080	12810	13540	14280	15010						
	12200	13010	13830	14650	15470	16300	17860				12＇－11＂	12500	13320	14140	14960	15790	16620	17860				12＇－9＂	
－ 18	12710	13570	14430	15300	16170	17040	18780	18950			13＇－1＂	13040	13910	14780	15650	16520	17390	18950				12＇－1	
$\vdash 19$	13210	14120	15020	15930	16840	17760	19600	20030			13＇－ $3^{\prime \prime}$	13570	14480	15400	16310	17230	18150	20030				13＇－0＂	
山20	13700	14640	15590	16540	17500	18460	20390	21110			13＇－4＂	14090	15040	16000	16960	17920	18890	20820				13＇－2＂	
ठ 21	14160	15150	16140	17140	18140	19140	21160	22200			13＇－${ }^{\prime \prime \prime}$	14580	15580	16580	17580	18590	19600	21640	22200			13＇－ $3^{\prime \prime}$	
${ }_{0} 22$	14610	15640	16880	17720	18760	19810	21910	23270			13＇．${ }^{\prime \prime \prime}$	15060	16100	17150	18200	19250	20310	22430	23270			13＇－5＂	
＜ 23	15050	16120	17190	18280	19360	20450	22650	24360			13＇．9＂	15530	16610	17700	18790	19890	20990	23200	24360 25420			13＇－ $\mathbf{6}^{\prime \prime}$	23
エ 24	15470	16580	17700	18820	19950	21080	23360	25420			13＇－11＂	15980	17110	18240	19370	20510	21660	23960	25420			13＇－${ }^{\prime \prime}$	
－ 25	15870	17020	18180	19350	20520	21690	24060	26520			14＇－ 0 ＂	16420	17590	18760	19940	21120	22310	24700	26520			13＇－9＂	
\＃ 26	16260	17450	18650	19860	21070	22290	24740	27210	27590		14＇－${ }^{\prime \prime}$	${ }^{16850}$	18050	19270	20480	21710	22940	25420	27590			${ }^{13} 3^{\prime}-11^{\prime \prime}$	
$\stackrel{1}{4}$	16640	17870	19110	20360	21610	22870	25410	27960	28670		14＇－3＂	17260	18500	19760	21020	22290	23560	26120	28670			14＇－ 0 ＂	
O 28	17010	18270	19550	20840	22130	23430	26050	28700	29760		14． $5^{\prime \prime}$	17660	18940	20240	21540	22850	24160	26810	29480	29760		14＇－1＂	28
¢ 29	17360	18660	19980	21300	22640	23980	26680	29410	30840		14－6＂	18040	19370	20700	22040	23400	24750	27480	30240	30840		14＇－2＂	29
	17700	19040	20400	21760	23130	24510	27300	30110	31910		144＊＊${ }^{\prime \prime}$	18420	19780	21150	22540	23930	25330	28140	30980	31910		14－ $4^{\prime \prime}$	
$\bigcirc 31$	18030	19410	20800	22200	23610	25030	27900	30790	32990		14－9＂	18780	20180	21590	23020	24450	25890	28790	31710			14＇－ $5^{\prime \prime}$	
	18350	19760	21190	22630	24080	25540	28480	31460	34060		14＇10＂	19130	20570	22020	23480	24950	26430	29410	32420	34060		14＇－7＂	32
I 33	18660	20100	21570	23040	24530	26030	29050	32110	35150		15＇． $0^{\prime \prime}$	19470	20950	22440	23940	25440	26960	30030	33120	35150		14＇－ $8^{\prime \prime}$	
－ 34	18950	20440	21930	23440	24970	26500	29610	32740	35910	36200	15－1＂	19800	21310	22840	24380	25920	27480	30630	33800	36200		14＇－9＂	
－ 35	19240	20760	22290	23840	25400	26970	30150	33360	36610	37310	15＇－ $3^{\prime \prime}$	20120	21670	23230	24800	26390	27990	31220	34470	37310		14－10＂	
工 36	19520	21060	22630	24210	25810	27420	30680	33970	37300	38350	15＇． $\mathbf{4}^{\prime \prime}$	20430	22010	23610	25220	28850	28970	31790 3235	35130	38350 39220		15＇－0＂${ }^{\text {15－}}$	
38 38	20040	21660	23290	24940	26610	$\begin{array}{\|c\|c} 28290 \\ 2710 \end{array}$	31690	35140	$\left.\right\|_{39270} ^{38630}$	40540	15． 6 15.8	21020	22670		26020	27720		32900 33430	37010	\int_{40620}^{39920}		$\begin{array}{\|c} 15 '-2 " 1 \\ 15^{\prime}-3^{\prime \prime} \end{array}$	
39	20290 20530	21940 22210	23600	25292	27360	29110	32660	36260	39900	4	$15-9$ 15	21580	23290	25030	26780	28560	30340	33950	37610	41300	42680	15＇．${ }^{\prime \prime}$	39 40

Table B-18 Continued

	(
	(
	+					
	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ \hline \end{array}\right.$					
	$\begin{array}{\|c} \dot{1} \\ \underset{\sim}{2} \end{array}$					
	\underline{i}					
	$\begin{aligned} & i \\ & =1 \\ & \hline \end{aligned}$					
	$\begin{array}{\|l\|l\|} 0 \\ 0 \\ 0 \\ \hline \end{array}$					
	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ \hline 1 \end{array}$					
	$\left[\begin{array}{l} \dot{0} \\ \dot{0} \\ \dot{\circ} \end{array}\right]$					

[^14]Table B-19

Table B－19 Continued
ORDINARY CLAY K ${ }^{\prime}-0.130$

	TRENCH WIDTH AT TOP OF PIPE										$\mathrm{N}-$
	10＇0＂${ }^{\prime \prime}$	10＇6＂	11－0＂	11－6＂	12＇0＂	$13^{\prime}-0^{\prime \prime}$	14＇－0＂	15＇0＂	16＇－0＂	17＇－0＂	WIDTH
5	4384										9＇－5＇
6	5395										9＇－9＂
7	6399	6457									10＇－ $1^{\prime \prime}$
8	7222	7570									10＇－5＂
	8024	8471	8739								10＇－9＂
岳 10	8805	9300	9796	9966							11＇－2＂
山 11	9566	10110	10650	11250							11－6＂
	10310	10900	11490	12090	12600						11＇－11＂
山 13	11030	11670	12310	12950	13600	14020					12－4＂
	11730	12420	13110	13800	14490	15510					12＇－9＂
	12420	13160	13890	14630	15370	16850	16890				13＇－${ }^{\prime \prime}$
－ 16	13090	13870	14650	15440	16220	17800	18080				13＇－2＂
ㅁ． 17	13740	14570	15400	16230	17060	18730	19250				13＇－ $\mathbf{4}^{\prime \prime}$
은 18	14370	15250	16130	17000	17890	19650	20430				13＇－5＂
$\stackrel{19}{ } 19$	14990	15910	16840	17760	18690	20550	21600				13＇－7＂
Ш 20	15600	16560	17530	18500	19480	21430	22780				13－8＂
$\bigcirc 21$	16180	17190	18210	19230	20240	22290	23940				13＇－10＂
\％ 22	16750	17810	18870	19930	21000	23140	25110				13＇－11＂
＜ 23	17310	18410	19520	20620	21740	23970	26200	26280			14＇－1＂
I 24	17850	19000	20150	21300	22460	24780	27110	27450			14－2＂
－ 25	18380	19570	20760	21960	23160	25580	28000	28610			14＇－3＂
른 26	18900	20130	21370	22610	23850	26360	28870	29780			14＇－4＂
立 27	19400	20670	21950	23240	24530	27120	29730	30940			14－5＂
O 28	19890	21200	22530	23860	25190	27870	30570	32120			14＇－7＂
¢ 29	20370	21720	23090	24460	25840	28610	31390	33280			14＇－8＂
4	20830	22230	23640	25050	26470	29330	32200	34460			14＇－9＂
$\bigcirc 31$	21280	22720	24170	25630	27090	30030	33000	35600			14＇－11＂
ㄷ 32	21720	23200	24690	26190	27700	30720	33780	36770			15＇－0＂
I 33	22150	23670	25200	26740	28290	31400	34540	37700	37950		15＇－1＂
¢ 34	22570	24130	25700	27280	28870	32070	35290	38540	39100		15＇－2＂
Ш 35	22980	24580	26190	27810	29440	32720	36030	39360	40290		15＇－3＇
工 36	23380	25020	26660	28320	30000	33360	36750	40170	41460		15＇－5＂
37	23760	25440	27130	28830	30540	33990	37460	40970	42600		15＇－5＂
38	24140	25860	27580	29320	31070	34600	38160	41750	43760		15＇－7＇
39	24510	26260	28020	29800	31590	35200	38850	42520	44940		15＇－8＂
40	24870	26660	28460	30270	32100	35790	39520	43280	46100		15＇．9＇

[^15]Table B-20

Table B-20 Continued
ORDINARY CLAY K ${ }^{\prime}$ - 0.130

	[10							
	0 0 i i 1							
	-				O N O	$\begin{array}{ll} \circ & 0 \\ \hline & 0 \\ \hline \end{array}$		
	-						$\left\lvert\, \begin{array}{llll} 0 & 8 & 8 & 0 \\ 0 & 8 \\ 0 & 8 & 4 \\ 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$
	-		안			$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{llll} 8 & 0 & 0 & 0 \\ \hline \end{array}$	
	[
	i i $\stackrel{1}{\sim}$ c						$\begin{array}{\|c\|cc\|} \hline 8 & 8 & 8 \\ \hline \end{array}$	
	ci 0 $\stackrel{1}{=}$ $=$	$\begin{aligned} & \text { YO } \\ & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$					$\begin{array}{llll} \hline & 8 & 9 & 0 \\ \hline \end{array}$	$\begin{array}{llll} \hline 1 & 0 & 0 & 8 \\ \hline \end{array}$
	-					$\left.\begin{array}{\|llll} \hline 0 & 0 & 0 & 9 \\ \hline \end{array} \right\rvert\,$	$\left\|\right\|$	
	-			$\left\lvert\, \begin{array}{lll} \therefore & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{llll} 8 & 0 & 0 & 8 \\ \hline \end{array}$			$\left\lvert\, \begin{array}{llll} \hline & 9 & 8 & 8 \\ \hline \end{array}\right.$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foo
Transition loads (bold type) and widths based on K $\mu-0.19$, $r_{\text {sdo }} 0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and/or trench widths

Table B-21

Table B-21 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

	マ	 						
	O 0 0 0							
	¢							
	¢					8 0 0 0 8		
	0 0 0 0 0							
	-			$\begin{aligned} & \text { 응 영 } \\ & \text { N } \\ & \text { N N N O } \\ & N \end{aligned}$				
	-							
	$\begin{aligned} & \dot{0} \\ & i \\ & \underline{w} \end{aligned}$				$\begin{array}{lll} 8 & 0 & 0 \\ \hline \end{array}$			
	$\begin{aligned} & \text { B } \\ & -1 \\ & \end{aligned}$							
							$\left\lvert\, \begin{array}{llll} 0 & 8 & 0 & 0 \\ \hline \end{array}\right.$	$\begin{aligned} & \hline 0 \\ & N_{1} \\ & \hline \end{aligned}$

[^16]C ORDINARY CLAY $K \mu^{\prime}-0.130$

	-						O 0 0 0	$\begin{array}{lll} \hline & 0 & 0 \\ \hline \end{array} 0_{0} 8$
	i							$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 6 & \circ \\ \hline \end{array}\right.$
	-					$\left\|\begin{array}{llll} 0 & 9 & 9 & 8 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \hline \end{aligned}\right.$	
	-					$\left\lvert\, \begin{array}{llll} \hline \hline & 0 & Q_{1} & O \\ \hline \end{array}\right.$		$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ \hline \end{array}\right.$
	+							
	- $\stackrel{1}{3}$ $\stackrel{3}{2}$				$\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ \hline \end{array}$			8 8 8
	- \vdots \vdots \sim \sim		$\begin{array}{llll} \hline 1 & 0 & 8 & 8 \\ \hline \end{array}$		$$			
	-							

Table B－22

A	SAND AND GRAVEL $K \mu{ }^{\prime}-0.165$										IAL B	LOADS	$\begin{aligned} & \text { S IN PO } \\ & \text { SATUF } \end{aligned}$	OUNDS RATE	$\begin{aligned} & \text { S PERLI } \\ & \text { ED TOF } \end{aligned}$	$\begin{aligned} & \text { INEAR } \\ & \text { P SOIL } \end{aligned}$	$\begin{aligned} & \text { FOOT } \\ & \mathrm{K} \mu^{\prime}- \end{aligned}$			$96^{\prime \prime}$	
	TRENCH WIDTH AT TOP OF PIPE									$\triangle T R A N-$ SITION WIDTH	TRENCH WIDTH AT TOP OF PIPE									ATRAN－ SITION WIDTH	
	12＇－0＂	13－0＂	14＇－0＂	15－0＂	16．0＂	17＇－0＂	18－0＂	19＇0＂	20＇0＂		12＇－0＂	13－0＂	14＇－0＂	15＇－0＂	$16^{\prime}-0^{\prime \prime}$	17＇－0＂	18＇0＇	19＇－0＂	20＇－0＂		
5	5251									11＇－3＂	5251									11－3＂	5
6	6432									11＇－8＂	6432									11－7＂	6
7	7659									12＇－ $0^{\prime \prime}$	7659									11＇－11＂	7
8	8617	8937								12＇－5＂	8700	8937								12＇－4＂	8
	9567	10260								12＇－9＂	9671	10260								12＇－ $8^{\prime \prime}$	9
Ш 10	10490	11480	11650							13＇－2＂	10620	11650								13＇ $0^{\prime \prime}$	10 自
山 11	11390	12480	13080							13＇－7＂	11540	112630	13080							13＇－5＂	$11 \stackrel{\Omega}{0}$
通 12	12260	13450	14580							13＇－11＂	12440	13630	14580							13＇－10＂	$12 \frac{\mathrm{I}}{\mathrm{I}}$
运 13	13120	14390	15680	16130						14＇－4＂	13320	14600	15880	16130						14＇－${ }^{\prime \prime}$	$13 \text { न }$
玄 14	13940	15320	16690	17750						14＇－9＂	14170	15550	16930	17750						14＇－${ }^{\prime \prime}$ 15－－ 1	14 O
	14750	16220	17690	19160	19430					15＇－2＂${ }^{\prime \prime}$	15010	16480	17960	19430						15＇－${ }^{\prime \prime}$	15 16 18
－ 16	15530	17090	18660	20230	21180					15＇－${ }^{\prime \prime \prime}$	15820	17390 18280	$1 \begin{aligned} & 18960 \\ & 19950\end{aligned}$	20540 21620	21180 23000					15＇－5＂	16
－ 17	16300	17950	19610	21270	22940	23000				16＇${ }^{16}$	16620	18280 19150	19950	21620 22670	23000					15＇10＂	$17 \bigcirc$
（ 18	17040	18780	20540 21440	22290 23290	24060 25150	24820 26270				16－5＂＇	17390 18150	19150	20910	22670	244570	$\begin{aligned} & 24820 \\ & 26270 \end{aligned}$				$\begin{aligned} & \mathbf{c}^{\prime \prime} 6^{\prime \prime}-2^{\prime \prime}-4 \end{aligned}$	$\begin{aligned} & 18 \text { 쥬 } \\ & 19 \text { ㅁ } \end{aligned}$
W 20	18460	20390	22320	24270	26220	27720				16＇－ $\mathbf{9}^{\prime \prime}$	18890	20820	22770	24720	26680	27720				16＇－7＂	20 F
○ 21	19140	21160	23190	25220	27270	29160				17＇－0＂	19600	21640	23670	25720	27770	29160				16＇－8＇	21 エ
¢ 22	19810	21910	24030	26160	28300	30440	30600			17＇－1＂	20310	22430	24560	26700	28840	30600				16＇－10＂	22 －
＜ 23	20450	22650	24860	27070	29300	31540	32040			17＇－3＂	20990	23200	25420	27650	19890	32040				17＇－ 0 ＂	23 m
I 24	21080	23360	25660	27970	30290	32610	33470			17＇－4＂	21660	23960	26270	28590	30920	33260	33470			17＇－${ }^{\prime \prime}$	24 O
－ 25	21690	24060	26450	28840	31250	33670	34910			17＇－6＂	22310	24700	27100	29510	31930	34360	34910			17－3＂	25 m
立 26	22290	24740	27210	29700	32200	34710	36340			17＇－8＂${ }^{\prime \prime}$	22940	25420	27910	30410	32920	35450	36340			17＇－4＂	26 －
妾 27	22870	25410	27960	30540	33120	35720	37790			17＇－9＂	23560	26120	28700	31290	33900	36510	37790			17＇－6＂	27 ㅇ
O 28	23430	26050	28700	31360	34030	36720	39200			17＇－11＂	24160	26810	29480	32160	34850	37560	39200			17＇－8＂	28 \％
盛 29	23980	26680	29410	32160	34920	37700	40490	40650		18＇－${ }^{\prime \prime}$	24750	27480	30240	33010	35790	38590	40650			17＇－9＂	29 O
－ 30	24510	27300	30110	32940	35790	38660	41540	42080		18＇－ 2 ＂	25330	28140	30980	33840	36710	39600	42080			17＇－10＂	30
\bigcirc	25030	27900	30790	33710	36640	39600	42560	43520		18＇－4＂	25890	28790	31710	34650	37620	40590	43520			18＇－ 0 ＂	31 0
－ 32	25540	28480	31460	34460	37480	40520	43580	44940		18＇－5＇	26430	29410	32420	35450	38500	41560	44640	44940		18＇－ $1^{\prime \prime}$	32 T
I 33	26030	29050	32110	35190	38300	41420	44570	46380		18＇－${ }^{\prime \prime}$	26960	30030	33120	36240	39370	42520	45690	46380		18＇－2＂	33
© 34	26500	29610	32740	35910	39100	42310	45540	47810		18＇－9＂	27480	30630	33800	37000	40220	43460	46720	47810		18＇－4＂	34 m
凹 35	26970	30150	33360	36610	39890	43180	46500	49210		18＇－10＂	27990	31220	34470	37760	41060	44390	47730	49210		18＇－5＇	35 m
工 36	27420	30680	33970	37300	40660	44040	47440	50640		18＇－11＂	28480	31790	35130	38490	41880	45300	48730	50640		18＇－6＂	$36 \rightarrow$
37	27860	31190	34560	37970	41410	44870	48360	51860	52090	19＇－ $1^{\prime \prime}$	28970	32350	35770	39220	42690	46190	49710	52090		18＇－8＇	37
38	28290	31690	35140	38630	42150	45690	49260	52850	53490	19＇－2＂	29440	32900	36390	39920	43480	47070	50670	53490		18＇－10＂	38
39	28710	32180	35710	39270	42870	46500	50150	53830	54920	19＇－3＂	29890	33430	37010	40620	44260	47930	51620	54920		18＇－10＂	39
40	29110	32660	36260	39900	43580	47290	51020	54780	56360	19＇－5＂	30340	33950	37610	41300	45020	48780	52550	56360		19＇－ $0^{\prime \prime}$	40

Table B-22 Continued
SATURATED CLAY K $\mu^{\prime}-0.110$

* For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc. Δ Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and/or trench widths

	TRENCH WIDTH AT TOP OF PIPE										ITRAN-
	12'-0'	$13^{\prime}-0^{\prime \prime}$	14'0"	15'-0"	16'-0'	17'-0"	18'-0"	19'0'	20'0'		WIDTH
5	5251										11'~ ${ }^{\prime \prime}$
6	6432										11'- ${ }^{\prime \prime}$
7	7659										11'- $9^{\prime \prime}$
8	8814	8937									12'- ${ }^{\prime \prime}$
9	9812	10260									12'-6"
Ш10	10790	11650									12'-10"
山 11	11740	12840	13080								13-3"
แ 12	12680	13870	14580								13'-7"
Ш13	13600	14880	16130								13'-11"
	14490	15870	17260	17750							14'- 4"
ㄴ 15	15370	16850	18330	19430							14'-9"
-16	16220	17800	19380	20960	21180						15'- ${ }^{\prime \prime}$
-17	17060	18730	20410	22090	23000						15'- 6"
$\bigcirc 18$	17890	19650	21420	23190	24820						15'-11"
19	18690	20550	22410	24280	26150	26270					16'-1"
Ш 20	19480	21430	23390	25350	27320	27720					16'- ${ }^{\prime \prime}$
$\bigcirc 21$	20240	22290	24340	26400	28470	29160					16'-4"
¢ 22	21000	23140	25280	27440	29600	30600					16'- 6"
< 23	21740	23970	26200	28450	30700	32040					16'- ${ }^{\prime \prime}$
I 24	22460	24780	27110	29450	31800	33470					16'-8"
- 25	23160	25580	28000	30430	32870	34910					16'-10"
픈 26	23850	26360	28870	31400	33930	36340					17-0"
$\underline{Y} 27$	24530	27120	29730	32340	34970	37600	37790				17-1"
$\bigcirc 28$	25190	27870	30570	33270	35990	38720	39200				17-2"
¢ 29	25840	28610	31390	34190	37000	39820	40650				17'-4"
ㄴ 30	26470	29330	32200	35090	37990	40900	42080				17'- 5"
$\bigcirc 31$	27090	30030	33000	35970	38960	41970	43520				17'-6"
$\vdash 32$	27700	30720	33780	36840	39920	43020	44940				17'-8'
I 33	28290	31400	34540	37700	40870	44050	46380				17-9"
¢ 34	28870	32070	35290	38540	41800	45070	47810				17'-10"
山 35	29440	32720	36030	39360	42710	46070	49210				17'-11"
± 36	30000	33360	36750	40170	43610	47060	50530	50640			18'- $1^{\prime \prime}$
37	30540	33990	37460	40970	44490	48030	51590	52090			18'- $1^{\prime \prime}$
38	31070	34600	38160	41750	45360	48990	52640	53490			18'- ${ }^{\prime \prime}$
39	31590	35200	38850	42520	46220	49940	53670	54920			18'- $\mathbf{4}^{\prime \prime}$
40	32100	35790	39520	43280	47060	50860	54690	56360			18'- 5'

Table B-23

Table B-23 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

* For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc. Δ Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
Interpolate for intermediate heights of backfill and/or trench widths

Table B-24

Table B－24 Continued
ORDINARY CLAY K ${ }^{\prime}-0.130$

	マエ	 						
	［							
	$\frac{\vdots}{\vdots}$							88 98 08
	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\stackrel{\bigcirc}{+}$	$\begin{array}{llll} \hline 9 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lll} 0 & 9 & 9 \\ \hline \end{array}$
	京							
	¢							$\left\lvert\, \begin{array}{lllll} \hline 0 & 9 & 9 & 0 & 8 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \\ \hline \end{array}\right.$
	$\begin{aligned} & \dot{9} \\ & i \\ & i \end{aligned}$							
	$\begin{aligned} & \dot{0} \\ & \varrho \\ & \hline \end{aligned}$				$\begin{aligned} & 08 \\ & \hline \end{aligned}$			
	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & i n \\ & \hline \end{aligned}\right.$		$\begin{aligned} & 0.0 \\ & \hline 10 \\ & \hline \end{aligned}$		$\begin{array}{l\|l\|l\|} \hline 8 & 0 & 0 \\ \hline \end{array}$		$\left\lvert\, \begin{array}{llll} \hline 0 & 9 & 0 & 0 \\ \hline \end{array}\right.$	
	$\begin{aligned} & 9 \\ & \dot{y} \\ & \hline \end{aligned}$							
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ \hline \end{array}$		$\begin{array}{ll} \hline 8 & 8 \\ \hline & 8 \\ \hline \end{array}$

Transition loads（bold type）and widths based on $K \mu-0.19$ ，$r_{\text {sd }} p-0.5$ in the embankment equation

Table B-25

114"

BACKFILL LOADS ON CIRCULAR PIPE IN TRENCH INSTIALLATION * 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL LOADS IN POUNDS PERR LINEAR FOOT B SATURATED TIOP SOIL K μ ' -0.150 TRENCH WID ${ }^{-}$H AT TOP OF PIPE
 べ

5 0 0 0							
0 N \sim						N	$\begin{aligned} & \text { 오오 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
					$\begin{array}{lll} \hline 8 & 8 & 8 \\ \hline \end{array}$		$\begin{array}{llll} 8 & 8 & 0 & 8 \\ 0 & 8 \\ & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 6 \end{array}$
$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ \hline \end{array}$				$\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ \hline & 0 \\ \hline & 0 \\ \hline \end{array}$			
$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$			$\begin{aligned} & \text { O} \\ & \hline \end{aligned}$				$\begin{array}{lll} 0 & 88 \\ & 8 \\ \text { N } \\ \hline \end{array}$
$\begin{array}{\|c} \underset{1}{\dot{1}} \\ \infty \end{array}$		\cdots					
-				0 8 \circ		$\begin{array}{lll} \hline 9 & 8 & 0 \\ \hline \end{array}$	
$\begin{aligned} & 9 \\ & 9 \\ & 0 \end{aligned}$		$$					
$\begin{aligned} & 0 \\ & i \\ & i n \\ & \end{aligned}$				$\left.\left\lvert\,\right.\right)$			
¢							

Table B-25 Continued
D

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET 								
	\bar{o} 0 \sim							
	S 8 N N							
	-							$\begin{array}{lllll} \hline ㅇ ㅛ ~ & 9 & 9 & 8 \\ 0 & 0 & N & 0 \\ \hline \end{array} \overline{0}$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$							
	$\begin{aligned} & \dot{9} \\ & \vdots \\ & \hline \end{aligned}$			¢				$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 \\ N & 0 & 0 \\ N & 0 & 0 \\ \hline \end{array}\right.$
	$\begin{aligned} & \bar{\vdots} \\ & \infty \end{aligned}$					$\left\|\begin{array}{llll} \hline 9 & 8 & 0 & 0 \\ \hline \end{array}\right\|$		
	$\begin{aligned} & \dot{9} \\ & i \end{aligned}$		8 ¢ N N		$\begin{array}{llll} \substack{0 \\ 0} & 0 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 & 0 \\ & 0 & 0 & 0 \\ \hline \end{array}$		$\left[\begin{array}{llll} 0 & 0 & 8 & 0 \\ \hline & 0 \\ \hline 10 & 8 \\ 0 & 0 & 0 \\ \hline \end{array}\right.$	
	$\begin{aligned} & \hline \vdots \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{lllll} \hline 0 & 0 & 0 & 8 & 8 \\ 0 & 0 & B \\ N & N & 0 \\ N & N & 0 & N \\ N & N & N \end{array}$				
	$\begin{aligned} & i \\ & i \\ & i n \end{aligned}$							
	 0 							$\left.\begin{array}{\|cccc} \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ \infty_{0} & 0 & 0 & i n \\ 0 & 0 & 8 & o \\ \sim \end{array} \right\rvert\,$

[^17]Table B-26

A	SAND AND GRAVEL K μ ' -0.165											$\begin{aligned} & \text { PE } \\ & B \end{aligned}$	$\begin{gathered} \text { N I } \\ \text { LOAI } \end{gathered}$	$\begin{aligned} & \text { IEIN } \\ & \text { SIN } \\ & \text { SAT } \end{aligned}$	$\begin{aligned} & \text { UND } \\ & \text { RAT } \end{aligned}$			$\begin{aligned} & \text { ON } \\ & =O O T \\ & K \mu^{\prime}- \end{aligned}$	-0.150				
	TRENCH WIDTH AT TOP OF PIPE										$\begin{array}{\|l\|} \hline \text { ITRAN- } \\ \text { SITION } \\ \text { WIDTH } \\ \hline \end{array}$	TRENCH WIDTH AT TOP OF PIPE										ATRAN- SITION WIDTH	
	14'-0"	15'-0"	16'-0"	17'0"	18'-0"	$19^{\prime}-0^{\prime \prime}$	20'-0'	21-0"	22'0"	23'0'		14*0"	15'-0"	$16.0{ }^{\prime \prime}$	17'-0"	18'0"	$19^{\prime}-0^{\prime \prime}$	$20^{\prime-} 0^{\prime \prime}$	$21^{\prime}-0^{\prime \prime}$	$22^{\prime \prime}$	$23{ }^{\prime} 0$		
5	6330										13-5"	6330										13'- ${ }^{\prime \prime}$	5
6	7723										13'-10"	7723										13'- ${ }^{\prime \prime}$	6
7	9034	9161									14'-2"	9100	9161									14'- $1^{\prime \prime}$	7
8	10210	10650									14'-7"	10290	10650									14'- 5"	8
9	11350	12180									14'-11"	11460	12180									14'-10"	9
Ш10	12470	13460	13760								15'-3"	12600	13600	13760								15'-2"	$10 \frac{1}{7}$
$\underset{\Perp}{\boldsymbol{W}} 11$	13560	14660	15400								15'- $8^{\prime \prime}$	13720	14810	15400								15-6"	11
L 12	14630	15820	17010	17090							16'- $1^{\prime \prime}$	14810	16000	17090								15'-11"	12
Ш13	15680	16960	18240	18830							16. ${ }^{\prime \prime}$	15880	17170	18460	18830							16'- ${ }^{\prime \prime}$	13
는 14	16690	18070	19460	20630							16'-10"	16930	18320	19700	20630							16'-8"	14 ○
ㄴ. 15	17690	19160	20640	22120	22490						17'-3"	17960	19440	20920	22400	22490						17'-1"	157
-16	18660	20230	21800	23380	24410						17-8' ${ }^{\prime \prime}$	18960	20540	22120	23700	24410						17'-6"	16 ロ
Q. 17	19610	21270	22940	24620	26290	26390					18-1"	19950	21620	23290	24970	26390						17'-10"	$17 \xrightarrow{\text { P }}$
$\bigcirc 18$	20540	22290	24060	25820	27600	28430					18'-6"	20910	22670	24440	26220	27990	28430					18'- ${ }^{\prime \prime}$	18 잦
- 19	21440	23290	25150	27010	28880	30540					18'-11"	21850	23710	25570	27440	29310	30540					18'-8'	19 끈
せ 20	22320	24270	26220	28180	30140	32100	32730				19'- 4"	22770	24720	26680	28650	30610	32580	32730				19'- 1"	20 F
$\bigcirc 21$	23190	25220	27270	29320	31370	33430	34980				19'- 9'	23670	25720	27770	29830	31890	33960	34980				19'-6"	21
m 22	24030	26160	28300	30440	32590	34740	36900	37240			20-2"	24560	26700	28840	30990	33150	35310	37240				$19^{\prime}-11^{\prime \prime}$	22 D
< 23	24860	27070	29300	31540	33780	36030	38280	39040			20'-4"	25420	27650	29890	32140	34390	36640	38900	39040			20-1"	23 ¢
I 24	25660	27970	30290	32610	34950	37290	39640	40820			20'-6"	26270	28590	30920	33260	35600	37960	40310	40820			20'- 3"	24 O
- 25	26450	28840	31250	33670	36100	38530	40970	42600			20'-8"	27100	29510	31930	34360	36800	39240	41690	42600			20'- 5"	$25 \stackrel{5}{\mathrm{~m}}$
픈 26	27210	29700	32200	34710	37220	39750	42280	44370			20'10"	27910	30410	32920	35450	37980	40520	43060	44370			20'-6"	26 -
ㄴ 27	27960	30540	33120	35720	38330	40950	43580	46140			21-0'	28700	31290	33900	36510	39140	41770	44400	46140			20'- 8"	27 -
$\bigcirc 28$	28700	31360	34030	36720	39420	42130	44840	47570	47900		21'-1"	29480	32160	34850	37560	40270	43000	45730	47900			20'-10"	28 V
¢ 29	29410	32160	34920	37700	40490	43290	46100	48910	49660		21'-3"	30240	33010	35790	38590	41390	44210	47030	49660			20'-11"	$29 \bigcirc$
ㄴ. 30	30110	32940	35790	38660	41540	44420	47320	50230	51430		21'- 5"	30980	33840	36710	39690	42490	45400	48320	51240	51430		21'- 1"	30 T
$\bigcirc 31$	30790	33710	36640	39600	42560	45540	48530	51530	53200		21-7"	31710	34650	37620	40590	43580	46580	49580	52600	53200		21-2"	31 D
$\vdash 32$	31460	34460	37480	40520	43580	46640	49720	52810	54960		21'-8"	32420	35450	38500	41560	44640	47730	50830	53940	54960		21-4"	32 m
I 33	32110	35190	38300	41420	44570	47720	50890	54070	56710		21'-10"	33120	36240	39370	42520	45690	48870	52060	55260	56710		21'- 5"	33 II
$\bigcirc 34$	32740	35910	39100	42310	45540	48780	52040	55310	58470		21'-11"	33800	37000	40220	43460	46720	49990	53270	56560	58470		21'-7"	34 T
Ш 35	33360	36610	39890	43180	46500	49830	53180	56530	59900	60240	22'-1"	34470	37760	41060	44390	47730	51090	54460	57840	60240		21-8"	35 m
I 36	33970	37300	40660	44040	47440	50850	54290	57740	61200	61990	22'- 3"	35130	38490	41880	45300	48730	52170	55630	59100	61990		21'-10"	36
37	34560	37970	41410	44870	48360	51860	55380	58920	62470	63740	22'-4"	35770	39220	42690	46190	49710	53240	56790	60350	63740		21'-11"	37
38	35140	38630	42150	45690	49260	52850	56460	60080	63720	65510	22-6"	36390	39920	43480	47070	50670	54290	57930	61580	65240	65510	22-1"	38
39	35710	39270	42870	46500	50150	53830	57520	61230	64960	67250	22'-7"	37010	40620	44260	47930	51620	55330	59050	62790	66540	67250	22'- ${ }^{\prime \prime}$	39
40	36260	39900	43580	47290	51020	54780	58560	62360	66170	69040	22'-9"	37610	41300	45020	48780	52550	56340	60160	63990	67830	69040	22'-4"	40

Table B-26 Continued
ORDINARY CLAY K ${ }^{\circ}-0.130$

[^18]Table B－27

A	SAND AND GRAVEL K $\mu^{\prime}-0.165$											$\begin{aligned} & \text { PE } \\ & \mathrm{L} \end{aligned}$	N TR LOADS	ENC SIN PO SATUR		STAL PER LI D TOP	$\begin{aligned} & \text { LLAT } \\ & \text { INEAF } \\ & \text { P SO } \end{aligned}$	$\begin{aligned} & \mathbf{O N} \\ & =\mathrm{OOT} \\ & \mathrm{~K} \mu^{\prime}- \end{aligned}$	-0.150			$126^{\prime \prime}$	
			TREN	NCH W	IDTH	AT TO	OP OF	PIPE						TREN	CH W	DTH	AT	P O	PIP				
	15＇－0＂	$16^{\prime}-0^{\prime \prime}$	17＇0＂	18＇－0＇	19＇－0＂	20＇－0＇	$21^{\prime}-0^{\prime \prime}$	22＇－0＇	23＇－0＂	24＇－0＇		15＇－0＂	16＇0＇	$17^{\prime}-0^{\prime \prime}$	18＇－0＂	$19^{\prime}-0^{\prime \prime}$	20＇－0＂	21＇－0＇	22＇0＇	23＇0＂	24＇0＂		
5	6619										14＇－0＂	6619										14－0＇	5
6	8068										14－5＂	8068										14－4＂	6
7	9563										14－9＂	9563										14＇－8＇	7
8	11000	11100									15－1＂	11100										15－ $0^{\prime \prime}$	8
9	12250	12690									15＇－6＂	12350	12690									15＇－${ }^{\prime \prime}$	9 I
佺 10	13460	14330									15－10＂	13600	14330									15＇－9＂	$10 \frac{1}{\text { m }}$
山 11	14660	15750	16020								16－3＂	14810	15900	16020								16＇－${ }^{\prime \prime}$	11 ¢
Li 12	15820	17010	17760								16－7＂	16000	17190	17760								16＇－6＂	12 I
13	16960	18240	19560								17－ $0^{\prime \prime}$	17170	18460	19560								16＇－10＂	$13 \text { न }$
는 14	18070	19460	20840	21410							17＇－5＂	18320	19700	21090	21410							17＇－${ }^{\prime \prime}$	14 O
ㄴ． 15	19160	20640	22120	23320							17－10＂	19440	20920	22400	23320							17＇－8＇	15 71
\bigcirc	20230	21800	23380	24960	25280						18－3＂	20540	22120	23700	25280							18＇－${ }^{\prime \prime}$	16 署
－17	21270	22940	24620	26290	27310						18＇－7＂	21620	23290	24970	26650							18＇－${ }^{\prime \prime}$	17 ¢
$\bigcirc 18$	22290	24060	25820	27600	29370	29400					19＇－ $1^{\prime \prime}$	22670	24440	26220	27990	$\|29400\|$						18＇－9＂	18 준
F 19	23290	25150	27010	28880	30750	31560					19＇－${ }^{\prime \prime}$	23710	25570	27440	29310	31190	31560					19＇－${ }^{\prime \prime}$	19 팦
Ш 20	24270	26220	28180	30140	32100	33780					19＇－10＂	24720	26680	28650	30610	32580	33780					19＇－7＂	20 F
$\bigcirc 21$	25220	27270	29320	31370	33430	35500	36070				20＇－3＂	25720	27770	29830	31890	33960	36070					20＇－${ }^{\prime \prime}$	21 I
$\bigcirc 22$	26160	28300	30440	32590	34740	36900	38440				20＇－9＂	26700	28840	30990	33150	35310	37480	38440				20＇－${ }^{\prime \prime}$	22 D
＜ 23	27070	29300	31540	33780	36030	38280	40530	40860			21－2＂	27650	29890	32140	34390	36640	38900	40860				20＇－11＂	23 m
I 24	27970	30290	32610	34950	37290	39640	41990	42740			21＇－4＂	28590	30920	33260	35600	37960	40310	42670	42740			21＇－${ }^{\prime \prime}$	$24 \bigcirc$
－ 25	28840	31250	33670	36100	38530	40970	43420	44620			21＇－6＂	29510	31930	34360	36800	39240	41690	44150	44620			21－2＂	25 m
픈 26	29700	32200	34710	37220	39750	42280	44820	46490			21－8＂	30410	32920	35450	37980	40520	43060	45610	46490			21＇－4＂	26 －1
난	30540	33120	35720	38330	40950	43580	46210	48340			21＇－9＂	31290	33900	36510	39140	41770	44400	47040	48340			21＇－6＂＇	$27 \bigcirc$
$\bigcirc 28$	31360	34030	36720	39420	42130	44840	47570	50210			21＇－11＂	32160	34850	37560	40270	43000	45730	48460	50210			21－7＂	$28 \quad 0$
\％ 29	32160	34920	37700	40490	43290	46100	48910	51730	52060		22＇－${ }^{\prime \prime}$	33010	35790	38590	41390	44210	47030	49860	52060			21＇－9＂	29 O
－ 30	32940	35790	38660	41540	44420	47320	50230	53150	53910		22＇－4＂	33840	36710	39600	42490	45400	48320	51240	53910			21＇－11＂	$30 \quad 7$
$\bigcirc 31$	33710	36640	39600	42560	45540	48530	51530	54540	55770		22＇－5＂	34650	37620	40590	43580	46580	49580	52600	55770			22＇－0＂	$31 \frac{0}{0}$
－ 32	34460	37480	40520	43580	46640	49720	52810	55910	57630		22＇－7＂	35450	38500	41560	44640	47730	50830	53940	57050	57630		22＇－${ }^{\prime \prime}$	32 m
I 33	35190	38300	41420	44570	47720	50890	54070	57260	59470		22－8＂	36240	39370	42520	45690	48870	52060	55260	58460	59470		22＇－4＇${ }^{\prime \prime}$	33 －7
© 34	35910	39100	42310	45540	48780	52040	55310	58590	61320		22＇－10＂	37000	40220	43460	46720	49990	53270	56560	59860	61320		22＇－6＂	34 T17
区 35	36610	39890	43180	46500	49830	53180	56530	59900	63160		22－11＂	37760	41060	44390	47730	51090	54460	57840	61230	63160		22＇－7＂	35 哿
亡 36	37300	40600	44040	47440	50850	54290	57740	61200	64670	64990	23＇－1＂	38490	41880	45300	48730	52710	55630	59100	62590	64990		22－8＂	36^{-1}
37	37970	41410	44870	48360	51860	55380	58920	62470	66030	66840	23＇－${ }^{\prime \prime}$	39220	42690	46190	49710	53240	56790	60350	63920	66840		22＇－10＂	37
38	38630	42150	45690	49260	52850	56460	60080	63720	67370	68710	23＇－4＂	39920	43480	47070	50670	54290	57930	61580	65240	68710		22＇－11＂	38
39	39270	42870	46500	50150	53830	57520	61230	64960	68700	70540	23＇－5＂	40620	44260	47930	51620	55330	59050	62790	66540	70310	70540	23＇－1＇	39
40	39900	43580	47290	51020	54780	58560	62360	66170	70000	72370	23－8＂	41300	45020	48780	52550	56340	60160	63990	67830	71680	72370	23＇－2＂	40

Table B-27 Continued
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

	Z	 						
	-1 							
	0 0 0 0							
는	1 0 N						$\begin{array}{\|lll} \hline 0 & 0 & 0 \\ \hline \end{array}$	
-	$\frac{\overline{9}}{N}$						$\begin{array}{\|ccc} \hline 8 & 8 & 8 \\ \hline \end{array}$	$\left[\begin{array}{lllll} \hline 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & N & 0 \\ N & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.$
$\stackrel{-}{4}$	$\begin{aligned} & \bar{o} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$							
$\frac{I}{\frac{I}{2}}$	$\begin{aligned} & \overline{0} \\ & -9 \\ & \hline \end{aligned}$							$\begin{aligned} & \hline 0.0 \\ & \hline 0 \end{aligned}$
$\begin{aligned} & 3 \\ & \frac{I}{U} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{\infty} \\ & \hline \end{aligned}$						$\left\lvert\, \begin{array}{llll} \hline & 0 & 0 & \circ \\ \hline \end{array}\right.$	8 0 N 0 N 0 N 0
$\begin{aligned} & \underset{Z}{\Psi} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & i \end{aligned}$							$\begin{array}{lll} \hline & 0 & 0 \\ \hline \end{array} O_{0} 8$
	$\begin{aligned} & \hline \dot{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & \hline \end{aligned}$						
	$\begin{aligned} & \overline{0} \\ & i s \\ & \text { in } \end{aligned}$						$\left\lvert\, \begin{array}{lll} \hline-0 & 0 & 0 \\ \hline \end{array}\right.$	

[^19]

Table B-28

Table B－28 Continued
ORDINARY CLAY K ${ }^{\prime}-\mathbf{0} 0.130$

	TRENCH WIDTH AT TOP OF PIPE										\triangle TRAN－
	15－0＂	16．0＂	17＇0＂	18．0＂	19＇0．0	20°	21－0	22＇0＂	$23^{\prime} 0$	25＇0＂	WIDTH
5	6908										14.
${ }_{7}$	8414										14＇－9＂
7	9887	9966									15＇－${ }^{\prime \prime}$
8	11200	11560									15＇－ $5^{\prime \prime}$
	12500	13210									15．9＂${ }^{15}$
岃 10	$\frac{13770}{15020}$	14770	14900								$16 \cdot 2^{\prime \prime}$ $16^{\prime \prime}-6^{\prime \prime}$
W 11	15020	16120	16640								
crin	16250	17440	18440								16＇10＂
迷13	1817460	18750 20030	20040	20290 22190							
年 15	19810	21300	22790	24150							17－11＂
－ 16	20960	22540		25710	26170						18＇－3＂
	22090	23770	29450	27130	28240						18＇－8＂
（ 18	23190	24970	26750	28530	30380 31790						19＇－${ }^{\text {19 }}$
	242850	26150	28030	29910	31790 3324	$\left\lvert\, \begin{aligned} & 32580 \\ & 34850 \end{aligned}\right.$					$\left\lvert\, \begin{gathered} 19 '-5^{\prime \prime} \\ 19^{\prime}-10^{\prime \prime} \end{gathered}\right.$
攵 20	25350	27320	29290	31270	33240	34850					
－ 21	27440		31760	33920	368090	38270					－${ }_{\text {20，}}$
－	28450	29600	31760 32960	33920	373090	388270	$3{ }^{39580}$	42060			20＇－${ }^{\prime \prime}$
エ 24	29450	31800	34150	36510	38870	41230	43600	44600			21－5＂
－ 25	30430	32870	35320	37770	40230	42690	45150	46620			21－7＂
立 26	31400	33930	36470	39020	41570	44120	46680	48580			21－8＂
$\stackrel{\rightharpoonup}{\square}{ }^{27}$	32340	34970	37600	40240	42890	45540	48200	50540			21＇－11＂
O 28	33270	35990	38720	41450	44190	46940	49690	52490			${ }^{22}{ }^{\prime \prime} 0^{\prime \prime}$
¢ 29	34190	37000	39820	42650	45480	48320	51160	54020	54440		${ }^{22}{ }^{\text {22 }}$ 2＂
	35090	37990	40900	43820	46750	49680	52620	55570	56390		${ }^{22}{ }^{\text {2－3 }}$
－ 31	35970	38960	41970	44980	48000	51030	54060	57100	58320		22＇－ $5^{\prime \prime}$
	36840	39920	43020	46120	49240	52360	55480	58620	60260		22＇－6＂
I 33	37700	40870	44050	47250	50450	53670	56890	60120	62210		22＇－${ }^{\prime \prime}$
－ 34	38540	41800	45070	48360	51650	54960	58280	61600	64150		22＇10＂
㞬 35	39360	42710	46070	49450	52840	56240	59650	63060	66080		${ }^{22}{ }^{\text {2 }} 11^{\prime \prime}$
I 36	40170	43610	47060	50530	54010	57500	61000	64510	68020		${ }^{23}{ }^{\text {3 }}$－${ }^{\prime \prime}$
37	40970	44490	48030	51590	55160	58740	62340	65940	69540	69930	23＇
38	41750	45360	48990	52640	56300	59970	63660	67350	71050	71870	23＇－2＂
39	42520	46220	49940	53670	57420	61180	64960	68740	72540	73800	23＇－ $\mathbf{4}^{\prime \prime}$
40	43280	47060	50860	54690	58530	62380	66250	70120	74010	75770	23＇－5＂

Table B-29
BACKFILL LOADS ON CIRCULAR PIPE IN TRENCH INSTALLATION
0
HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET

ITRAN-

Table B-29 Continued
ORDINARY CLAY K $\mu^{\prime}-0.130$

	¢ 1 0 0 1							
							$\left.\begin{array}{\|lll\|} \hline 0 & 9 & 9 \end{array}\right)$	
	-							
	i i N N				$\begin{array}{llll} \hline 0 & 0 & 0 \\ \hline & 0 \\ \hline \end{array}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
				O 0 0				$\begin{array}{llll} \hline 8 & 9 & 8 & 8 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$
	-			8 0		$\left\|\begin{array}{llll} \hline & 0 & 0 & 0 \\ \hline \end{array}\right\|$	$\begin{array}{\|cccc} \hline 0 & 8 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{\|ccc} \hline 8 & 0 & 0 \\ \hline \end{array}$
					$\begin{array}{\|cccc} \hline 0 & 8 & 8 & 9 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & N \\ m & N & 0 & 0 \\ m & m & 0 \\ \hline \end{array}$			$\begin{array}{\|c} \hline 088 \\ \hdashline \\ \hline \end{array}$
	-						$\begin{array}{\|cccc\|} \hline 8 & 0 & 0 & 8 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.890 \\ & 0 \\ & 0 \end{aligned}$
	¢	$\begin{aligned} & \hline{ }_{0} \\ & \hline \end{aligned}$						$\begin{array}{\|ccccc} \hline 8 & 0 & 8 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline & 0 & 0 \\ \hline \end{array}$
			$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 8 \\ N & 8 \\ \hline \end{array}\right.$			$\left\lvert\, \begin{array}{llll} \hline 0 & 0 & 8 & 8 \\ \hline \end{array}\right.$		$\begin{aligned} & 0 \\ & 0 \end{aligned} \mathscr{O}_{0} 8$

[^20]Table B-30
$4 \pi^{4}$

Table B-30 Continued
SATURATED CLAY K $\mu-0.110$

HEIGHT OF BACKFILL H ABOVE TOP OF PIPE, FEET 								
	$\begin{aligned} & p \\ & 0 \\ & 0 \\ & \hline \end{aligned}$							
	-							
	-i						$\begin{array}{lll} \hline 9 & 8 & 0 \\ \hline \end{array}$	
	-				$\begin{aligned} & \text { 으웅 } \\ & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$		$\left[\begin{array}{lll} 8 & 8 & 8 \\ \hline \end{array}\right.$	
	$\begin{aligned} & \overline{0} \\ & \text { Ni } \end{aligned}$					$\begin{array}{llll} \hline 0 & 8 & 0 & 0 \\ \hline \end{array}$		$\begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline \end{array}$
	$\begin{aligned} & \dot{9} \\ & \frac{1}{\mathrm{~N}} \end{aligned}$			$\begin{array}{ll} \hline 9 & 0 \\ 6 & 8 \\ \hline & 8 \\ m & \mathrm{~m} \end{array}$		$\begin{array}{lll} \hline 8 & 8 & 8 \\ \hline 0 & 0 \\ 0 & 0 \\ \hline & 0 & 0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 88 \\ & \hline \end{aligned}\right.$	
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{array}{lll} \hline 8 & 8 & 9 \\ \hline \end{array}$			
	$\begin{aligned} & 0 \\ & 0 \\ & 6 \end{aligned}$							
	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \hline 1 \end{aligned}$		$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$					
	\square \vdots $\stackrel{1}{4}$			$\left\|\begin{array}{lllll} 0 & 9 & 9 & 9 & 0 \\ 0 & 5 & 0 \\ n & 0 & 0 & 0 \\ n & 0 & 0 \\ N & N & 0 & 0 \\ N \end{array}\right\|$				$\begin{array}{lll} \hline 0 & 0 & 0 \\ \hline \end{array}$

[^21]

	マエ	 							
	\|l								O 0 $\%$ 0 0
	(1)								
					¢\% ¢ ¢ F				
	¢				$$				
	-							$\begin{array}{lll} 8 & 0 & 8 \\ \hline & 8 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$	
	$\begin{aligned} & \text { io } \\ & \text {-̀ } \end{aligned}$		¢ ¢ N0, N		$\begin{array}{lll} 0 & 0 & 8 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} \mathcal{O}_{2} & 0 & 0 \\ \hline \end{array}\right.$			
	$\begin{aligned} & \dot{9} \\ & \dot{9} \end{aligned}$			$\begin{array}{llll} \hline 8 & \circ & 0 & 8 \\ \hline \end{array}$			$\begin{array}{llll} \hline 8 & 0 & 0 & 0 \\ \hline \end{array}$		
	1 0 0 -8	0					$\begin{aligned} & 0.0 \\ & 0_{0}^{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.808 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
	i					$\left\|\begin{array}{llll} 0 & 0 & 0 & 0 \\ \hline \end{array}\right\|$			

Table B-31
DESIGN VALUES OF SETTLEMENT RATIO

Installation and Foundation Condition	Settlement Ratio $r_{\text {sd }}$	
	Usual Range	Design Value
Positive Projecting...	0.0 to +1.0	
Rock or Unyielding Soil	+1.0	+1.0
*Ordinary Soil	+0.5 to +0.8	+0.7
Yielding Soil	0.0 to +0.5	+0.3
Zero Projecting...		0.0
Negative Projecting.......................................	-1.0 to 0.0	
$\mathrm{p}^{\prime}=0.5$...		-0.1
$\mathrm{p}^{\prime}=1.0$..		-0.3
$\mathrm{p}^{\prime}=1.5$..		-0.5
$p^{\prime}=2.0$..		-1.0
Induced Trench ...	-2.0 to 0.0	
		-0.5
$\mathrm{p}^{\prime}=1.0$..		-0.7
$p^{\prime}=1.5$...		-1.0
$\mathrm{p}^{\prime}=2.0$...		-2.0

[^22]Table B-32

BEDDING FACTORS FOR CIRCULAR PIPE POSITIVE PROJECTING EMBANKMENT INSTALLATIONS

$\frac{\mathrm{H}}{\mathrm{B}_{\mathrm{c}}}$	CLASS A BEDDING					CLASS B BEDDING				
$\mathrm{P}=0.9$										
	$\mathrm{rssd}^{\text {p }}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	5.09	5.09	5.09	5.09	5.09	2.92	2.92	2.92	2.92	2.92
1.0	5.09	5.09	5.09	5.09	5.09	2.92	2.92	2.92	2.92	2.92
1.5	5.09	4.83	4.47	4.47	4.47	2.92	2.83	2.71	2.71	2.71
2.0	5.09	4.49	4.35	4.19	4.19	2.92	2.77	2.67	2.61	2.61
3.0	5.09	4.50	4.21	4.06	3.88	2.92	2.72	2.62	2.56	2.50
5.0	4.97	4.37	4.11	3.97	3.81	2.88	2.67	2.58	2.52	2.46
10.0	4.82	4.28	4.04	3.90	3.76	2.83	2.64	2.55	2.50	2.44
15.0	4.77	4.25	4.01	3.88	3.74	2.81	2.63	2.54	2.49	2.43
$p=0.7$										
	$\mathrm{r}_{\text {sd }} p=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} p=0$	0.1	0.3	0.5	1.0
0.5	6.03	6.03	6.03	6.03	6.03	2.80	2.80	2.80	2.80	2.87
1.0	5.61	4.79	4.79	4.79	4.79	2.73	2.58	2.58	2.58	2.58
1.5	5.17	4.46	4.19	4.19	4.19	2.65	2.50	2.44	2.44	2.44
2.0	4.98	4.35	4.11	3.99	3.98	2.61	2.48	2.42	2.39	2.39
3.0	4.80	4.25	4.02	3.90	3.75	2.58	2.45	2.40	2.36	2.32
5.0	4.66	4.18	3.95	3.84	3.70	2.55	2.43	2.38	2.35	2.31
10.0	4.57	4.12	3.91	3.79	3.66	2.53	2.42	2.36	2.33	2.30
15.0	4.53	4.09	3.89	3.77	3.65	2.52	2.41	2.36	2.33	2.29
$\mathrm{p}=0.5$										
	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	4.84	4.54	4.55	4.55	4.55	2.37	2.33	2.33	2.33	2.33
1.0	4.33	3.97	3.97	3.97	3.97	2.31	2.25	2.25	2.25	2.25
1.5	4.18	3.83	3.68	3.68	3.68	2.28	2.23	2.20	2.20	2.20
2.0	4.11	3.79	3.65	3.58	3.58	2.27	2.22	2.20	2.19	2.18
3.0	4.04	3.75	3.62	3.54	3.45	2.26	2.22	2.19	2.18	2.16
5.0	3.99	3.72	3.58	3.51	3.43	2.26	2.21	2.19	2.17	2.16
10.0	3.95	3.69	3.56	3.49	3.41	2.25	2.20	2.18	2.17	2.15
15.0	3.94	3.68	3.56	3.48	3.40	2.25	2.20	2.18	2.17	2.15
$p=0.3$										
	$\mathrm{r}_{\text {sd }} \mathrm{P}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	3.49	3.41	3.41	3.41	3.41	2.11	2.10	2.10	2.10	2.10
1.0	3.40	3.28	3.28	3.28	3.28	2.10	2.08	2.08	2.08	2.08
1.5	3.37	3.25	3.20	3.20	3.20	2.09	2.08	2.07	2.07	2.07
2.0	3.35	3.24	3.20	3.16	3.16	2.09	2.08	2.07	2.07	2.07
3.0	3.34	3.23	3.18	3.15	3.11	2.09	2.08	2.07	2.07	2.06
5.0	3.33	3.22	3.17	3.14	3.11	2.09	2.08	2.07	2.07	2.06
10.0	3.32	3.22	3.17	3.14	3.10	2.09	2.08	2.07	2.07	2.06
15.0	3.32	3.22	3.17	3.14	3.10	2.09	2.08	2.07	2.07	2.06
ZERO PROJECTING										
	2.83					2.02				

BEDDING FACTORS FOR CIRCULAR PIPE

POSITIVE PROJECTING EMBANKMENT INSTALLATIONS

$\frac{H}{B_{c}}$	CLASS C BEDDING					CLASS D BEDDING				
$\mathrm{p}=0.9$										
	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	2.29	2.29	2.29	2.29	2.29	1.31	1.31	1.31	1.31	1.31
1.0	2.29	2.29	2.29	2.29	2.29	1.31	1.31	1.31	1.31	1.31
1.5	2.29	2.26	2.16	2.16	2.16	1.31	1.29	1.27	1.27	1.27
2.0	2.29	2.20	2.14	2.10	2.10	1.31	1.28	1.26	1.24	1.24
3.0	2.29	2.17	2.10	2.07	2.02	1.31	1.27	1.24	1.23	1.22
5.0	2.27	2.14	2.08	2.04	2.00	1.30	1.26	1.24	1.22	1.21
10.0	2.24	2.12	2.06	2.03	1.99	1.29	1.25	1.23	1.22	1.20
15.0	2.23	2.10	2.05	2.02	1.98	1.29	1.25	1.23	1.21	1.20
$\mathrm{p}=0.7$										
	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	r sdp $=0$	0.1	0.3	0.5	1.0
0.5	2.22	2.22	2.22	2.22	2.22	1.28	1.28	1.28	1.28	1.28
1.0	2.18	2.08	2.08	2.08	2.08	1.27	1.24	1.24	1.24	1.24
1.5	2.13	2.03	1.99	1.99	1.99	1.25	1.22	1.20	1.20	1.20
2.0	2.10	2.01	1.97	1.95	1.95	1.24	1.21	1.20	1.19	1.19
3.0	2.08	2.00	1.96	1.94	1.91	1.24	1.21	1.19	1.18	1.17
5.0	2.06	1.98	1.95	1.93	1.90	1.23	1.20	1.19	1.18	1.17
10.0	2.05	1.98	1.94	1.92	1.89	1.22	1.20	1.18	1.18	1.17
15.0	2.04	1.97	1.94	1.91	1.89	1.22	1.20	1.18	1.18	1.17
$\mathrm{p}=0.5$										
	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	1.94	1.92	1.92	1.92	1.92	1.19	1.18	1.18	1.18	1.18
1.0	1.90	1.86	1.86	1.86	1.86	1.17	1.16	1.16	1.16	1.16
1.5	1.88	1.85	1.83	1.83	1.83	1.16	1.15	1.14	1.14	1.14
2.0	1.88	1.84	1.83	1.82	1.82	1.16	1.15	1.14	1.14	1.14
3.0	1.87	1.84	1.82	1.81	1.80	1.16	1.15	1.14	1.14	1.13
5.0	1.86	1.83	1.82	1.81	1.80	1.16	1.14	1.14	1.13	1.13
10.0	1.86	1.83	1.81	1.80	1.79	1.15	1.14	1.14	1.13	1.13
15.0	1.86	1.83	1.81	1.80	1.79	1.15	1.14	1.14	1.13	1.13
$\mathbf{p}=0.3$										
	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0	$\mathrm{r}_{\text {sd }} \mathrm{p}=0$	0.1	0.3	0.5	1.0
0.5	1.76	1.76	1.76	1.76	1.76	1.12	1.11	1.11	1.11	1.11
1.0	1.76	1.75	1.75	1.75	1.75	1.11	1.11	1.11	1.11	1.11
1.5	1.75	1.74	1.74	1.74	1.74	1.11	1.11	1.11	1.11	1.11
2.0	1.75	1.74	1.74	1.74	1.74	1.11	1.11	1.11	1.11	1.11
3.0	1.75	1.74	1.74	1.73	1.73	1.11	1.11	1.11	1.11	1.10
5.0	1.75	1.74	1.74	1.73	1.73	1.11	1.11	1.11	1.11	1.10
10.0	1.75	1.74	1.74	1.73	1.73	1.11	1.11	1.11	1.10	1.10
15.0	1.75	1.74	1.74	1.73	1.73	1.11	1.11	1.11	1.10	1.10
ZERO PROJECTING										
	1.70					1.10				

Figure B-1
TRENCH BACKFILL LOADS ON CIRCULAR PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SAND AND GRAVEL $K \mu^{\prime}=0.165$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure B-2
TRENCH BACKFILL LOADS ON CIRCULAR PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $k_{\mu}=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure B-3
TRENCH BACKFILL LOADS ON CIRCULAR PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL
SATURATED TOP SOIL $K \mu^{\prime}=0.150$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure B-4
TRENCH BACKFILL LOADS ON CIRCULAR PIPE 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure B-5
TRENCH BACKFILL LOADS ON CIRCULAR PIPE 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{s d}=0.7$ and $p=0.7$ in the embankment equation

Figure B-6
TRENCH BACKFILL LOADS ON CIRCULAR PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K \mu=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure B-7
TRENCH BACKFILL LOADS ON CIRCULAR PIPE 100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL SATURATED CLAY $\mathrm{K} \mu^{\prime}=0.110$

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $k_{\mu}=0.19, r_{s a}=0.7$ and $\rho=0.7$ in the embankment equation

Figure B-8
TRENCH BACKFILL LOADS ON CIRCULAR PIPE
100 POUNDS PER CUBIC FOOT BACKFILL MATERIAL

For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
Transition loads and widths based on $K_{\mu}=0.19, r_{\text {sd }}=0.7$ and $p=0.7$ in the embankment equation

Figure B-9
EMBANKMENT FILL LOADS ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure B-10
EMBANKMENT FILL LOADS ON CIRCULAR PIPE POSITIVE PROJECTING $\quad r_{s d} p=0.1 \quad 100$ POUNDS PER CUBIC FOOT FILL

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure B-11

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure B-12
EMBANKMENT FILL LOADS ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure B-13
EMBANKMENT FILL LOADS ON CIRCULAR PIPE

For fill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds increase 20%, etc. Interpolate for intermediate pipe sizes.

Figure B-14

TRENCH BEDDINGS CIRCULAR PIPE

CLASSA
Reinforced $A_{s}=1.0 \% B_{f}=4.8$
Reinforced $A_{z}=0.4 \% B_{f}=3.4$
Plain

$$
B_{f}=2.8
$$

SHAPED SUBGRADE WITH
GRANULAR FOUNDATION

CLASS B
$B_{f}=1.9$

GRANULAR FQUNDATION

For Class A beddings, use d as depth of concrete below pipe unlest otherwise indicated by soll or design conditions.
For Class B and C beddings, subgrades should be excavated or over excavnted, If necestary, so a uniform foundation free of protruding rocks may be provided.
Special care may be necessary with Class A or other unyielding foundations to cushion pipe from shock when blesting can be anticipeted in the aree.

Figure B-15

TRENCH BEDDINGS

Figure B-16

EMBANKMENT BEDDINGS CIRCULAR PIPE

Figure B-17
EMBANKMENT BEDDINGS

Glossary of Terms

GLOSSARY OF HYDRAULIC TERMS

(Chapters 2 and 3)
A \qquad cross-sectional area of flow, square feet
A drainage area, acres

AHW.......allowable headwater depth at culvert entrance, feet
C.............coefficient of runoff which is a function of the characteristics of the drainage area

C1constant in Manning's Formula for full flow
Dheight of culvert opening or diameter of pipe, inches or feet
dc............critical depth, feet
H.............head loss, feet (the difference between the elevation of the entrance pool surface and the outlet tailwater surface)

HW..........headwater depth at culvert inlet measured from invert of pipe, feet
ho............vertical distance between the culvert invert at the outlet and the hydraulic grade line, feet
keentrance head loss coefficient
i..............rainfall intensity, inches per hour
L..............length of culvert, feet
n..............Manning's coefficient of roughness
Q.............flow in sewer or culvert discharge, cubic feet per second
R.............hydraulic radius, equals area of flow divided by wetted perimeter, feet
R.............inside vertical rise of elliptical, arch pipe, or boxes, feet or inches
S.............inside horizontal span of elliptical, arch pipe, or boxes, feet or inches
S.............slope of sewer, feet per foot

So............slope of culvert, feet per foot
TW..........tailwater depth at culvert outlet measured from invert of pipe, feet
V.............velocity, feet per second

GLOSSARY OF LOAD TERMS

(Chapter 4 and Appendix B)
Aa constant corresponding to the shape of the pipe
$A_{L L}$...........distributed live load area on subsoil plane at outside top of pipe, square feet
A_{s}. area of transverse steel in a cradle expressed as a percentage of the area of concrete in the cradle at the invert
B_{c}.............outside horizontal span of the pipe, feet
B_{c}^{\prime}............outside vertical height of the pipe, feet
B_{d}............ width of trench at top of pipe, feet
$B_{o t}$...........transition width at top of pipe, feet
$B_{f} \ldots \ldots$. bedding factor
$B_{f e} \ldots$. bedding factor, embankment
$B_{f L L}$...........bedding factor for live load
$B_{f 0}$...........minimum bedding factor, trench
$B_{f v} v a r i a b l e ~ b e d d i n g ~ f a c t o r, ~ t r e n c h ~$
$B_{t} \ldots \ldots$. maximum width of excavation ahead of pipe or tunnel, feet
C. \qquad pressure coefficient for live loads
Cc............load coefficient for positive projecting embankment installations

Cdload coefficient for trench installations
Cnload coefficient for negative projecting embankment installations
Ct............load coefficient for jacked or tunneled installations
c..............thickness of concrete cover over the inner reinforcement, inches
c..............coefficient of cohesion of undisturbed soil, pounds per square foot

Diinside diameter of pipe, inches
Dooutside diameter of pipe, inches
D.............inside diameter of circular pipe, feet or inches

D-load.....the supporting strength of a pipe loaded under three-edge-bearing test conditions expressed in pounds per linear foot per foot of inside diameter or horizontal span
Do.01the maximum three-edge-bearing test load supported by a concrete pipe before a crack occurs having a width of 0.01 inch measured at close intervals throughout a length of at least 1 foot, expressed as D-Load.

Dult.The maximum three-edge-bearing test load supported by a pipe, expressed as D-load.
d.............depth of bedding material below pipe, inches
dc............deflection of the vertical height of the pipe
E.............modulus of elasticity of concrete, pounds per square inch (4,000,000 psi)
e. base of natural logarithms (2.718)
F.S.factor of safety
H.............height of backfill or fill material above top of pipe, feet

HAFhorizontal arching factor, dimensionless
Heheight of the plane of equal settlement above top of pipe, feet
h.............thickness of rigid pavement

If..............impact factor for live loads
K............ratio of active lateral unit pressure to vertical unit pressure
k..............modulus of subgrade reaction, pounds per cubic inch
L..............length of ALL parallel to longitudinal axis of pipe, feet

Le............effective live load supporting length of pipe, feet
MFI..........moment at the invert under field loading, inch-pounds/ft
MFIELDmaximum moment in pipe wall under field loads, inch-pounds/ft
MTESTmaximum moment in pipe wall under three-edge bearing test load, inch-pounds/ft
μ.............coefficient of internal friction of fill material
$\mu^{\prime} c o e f f i c i e n t ~ o f ~ s l i d i n g ~ f r i c t i o n ~ b e t w e e n ~ t h e ~ b a c k f i l l ~ m a t e r i a l ~ a n d ~ t h e ~ t r e n c h ~ w a l l s ~$
$N a$ parameter which is a function of the distribution of the vertical load and vertical reaction

NFIaxial thrust at the invert under field loads, pounds per foot
NFSaxial thrust at the springline under a three-edge bearing test load, pounds per foot
N^{\prime}. a parameter which is a function of the distribution of the vertical load and the vertical reaction for the concrete cradle method of bedding
$P L$...........prism load, weight of the column of earth cover over the pipe outside diameter, pounds per linear foot
p...............wheel load, pounds
p..............projection ratio for positive projecting embankment installation; equals vertical distance between the top of the pipe and the natural ground surface divided by the outside vertical height of the pipe
p^{\prime}. projection ratio for negative projecting installations; equals vertical distance between the top of the pipe and the top of the trench divided by the trench width
po............live load pressure at the surface, pounds per square inch or pounds per square foot
$P(H, X) \ldots \ldots$. pressure intensity at any vertical distance, H , and horizontal distance, X , pounds per square inch or pounds per square foot
ø.............3.1416
q..............the ratio of total lateral pressure to the total vertical load
$R \ldots$. inside vertical rise of elliptical, arch pipe, or boxes feet or inches
Rs............radius of stiffness of the concrete pavement, inches or feet
$r \ldots$. radius of the circle of pressure at the surface, inches
rsdsettlement ratio
S.............inside horizontal span of elliptical, arch pipe, or boxes feet or inches

SL............outside horizontal span of pipe $\left(\mathrm{B}_{\mathrm{C}}\right)$ or width of A_{LL} transverse to longitudinal axis of pipe, whichever is less, feet

Sd compression of the fill material in the trench within the height $p^{\prime} B_{d}$ for negative projecting embankment installations

Sf.
............settlement of the pipe into its bedding foundation
Sg............settlement of the natural ground or compacted fill surface adjacent to the pipe
T.E.B.......three-edge bearing strength, pounds per linear foot
t...............pipe wall thickness, inches
u..............Poisson's ratio of concrete (0.15)

VAF.........vertical arching factor, dimensionless
Wc...........fill load for positive projecting embankment installations, pounds per linear foot
Wd...........backfill load for trench installations, pounds per linear foot
WEearth load, pounds per linear foot
WL...........live load on pipe, pounds per linear foot
Wn...........fill load for negative projecting embankment installations, pounds per linear foot
Wp...........weight of pavement, pounds per linear foot
$W T$..........total live load on pipe, pounds
Wtearth load for jacked or tunneled installations, pounds per linear foot
w............. unit weight of backfill or fill material, pounds per cubic foot
WLaverage pressure intensity of live load on subsoil plane at outside top of pipe, pounds per square foot
x. a parameter which is a function of the area of the vertical projection of the pipe over which active lateral pressure is effective
x^{\prime}. a parameter which is a function of the effective lateral support provided by the concrete cradle method of bedding

Condensed Bibliography

CONDENSED BIBLIOGRAPHY

"Airport Drainage," Federal Aviation Agency, AC 150/5320-5A, U. S. Government Printing Office, Washington, D. C. (1965).
Applied Hydrology, R. K. Linsley, Jr., M. A. Kohler, and J. L. H. Paulhaus, McGraw-Hill Book Co., Inc., New York (1949).
"California Culvert Practice," Second Edition, Div. Highways, Department of Public Works, State of California (1960).
"Capacity Charts for the Hydraulic Design of Highway Culverts," Bureau of Public Roads, Hydr. Eng. Circular No. 10, U. S. Government Printing Office, Washington, D. C. (1965).
"Computerized Design of Precast Reinforced Box Culverts," La Tona, R. W., Heger, F. J., and Bealey, M., Highway Research Record 443, 1973.
Concrete Pipe Handbook, American Concrete Pipe Association, Vienna, Virginia (1981).

Concrete Sewers, Portland Cement Association, Chicago, Illinois.
"Conduit Strengths and Trenching Requirements," H. M. Reitz, M. G. Spangler, H. L. White, J. G. Hendrickson, Jr., and H. H. Benjes, Washington University Conf. Syllabus, St. Louis, Missouri (1958).
"Design and Construction of Sanitary and Storm Sewers," WPCF Manual of Practice No. 9, ASCE Manuals and Reports on Engineering Practice No. 37, Water Pollution Control Federation, Washington, D. C.
"Design Data Series," American Concrete Pipe Association, Vienna, Virginia (1969).
"Electronic Computer Program for Hydraulic Analysis of Circular Culverts," Bureau of Public Roads, BPR Program HY-1, U.S. Government Printing Office, Washington, D. C. (1965).
Engineering Hydraulics, John Wiley \& Sons, Inc., New York.
"Generalized Estimates of Probable Maximum Precipitation for the United States West of the 105 th Meridian for Areas to 400 Sq . Miles and Durations to 24 Hr.," Weather Bureau, Technical Paper No. 38, U.S. Government Printing Office, Washington, D. C. (1960).
Handbook of Applied Hydraulics, McGraw-Hill Book Co., Inc., New York.
Handbook of Concrete Culvert Pipe Hydraulics, Portland Cement Association, Chicago, Illinois (1964).
Handbook of Hydraulics, H. W. King and E. F. Brater, 5th Edition, McGrawHill Book Co., Inc., New York (1963).
"Hydraulic Charts for the Selection of Highway Culverts," Bureau of Public Roads, Hydraulic Engineering Circular No. 5, U.S. Government Printing Office, Washington, D. C. (1965).

Hydraulics of Culverts, J. G. Hendrickson, Jr., American Concrete Pipe Association, Vienna, Virginia (1964).
"Hydrology," Manual of Practice No. 28, American Society of Civil Engineers, New York (1949).
Hydrology for Engineers, R. K. Linsley, Jr., M. A. Kohler, and J. L. H. Paulhaus, McGraw-Hill Book Co., Inc., New York (1958).
"Loads on Pipe in Wide Ditches," W. J. Schlick, Iowa Eng. Exp. Sta., Bulletin No. 108 (1932).
"Municipal Requirements for Sewer Infiltration," Public Works, 96, 6, 158 (1965).
"Negative Projecting Conduits," M. G. Spangler and W. J. Schlick, Iowa Engineering Experiment Station, Engineering Report No. 14 (1952-53).
"Nomenclature for Hydraulics," Manual of Engineering Practice No. 43, American Society of Civil Engineers, New York (1962).
"Rainfall Frequency Atlas of the United States for Durations from 30-Min. to 24-Hr. and Return Periods from 1 to 100 Yr.," Weather Bureau, Technical Paper No. 40, U. S. Government Printing Office, Washington, D. C. (1961).
"Rainfall Intensity-Frequency Data," D. L. Yarnell, Department of Agriculture, Misc. Publication No. 204, U.S. Government Printing Office, Washington, D. C. (1935).
"Rainfall Intensity-Frequency Regime," Weather Bureau, Technical Paper No. 29, U. S. Government Printing Office, Washington, D. C.: Part 1 - Ohio Valley (1957); Part 2 - Southeastern U.S. (1958); Part 3 - Middle Atlantic Region (1958); Part 4 - Northeastern U.S. (1959) ; Part 5 - Great Lakes Region (1960).
"Reinforced Concrete Pipe Culverts - Criteria for Structural Design and Installation," Bureau of Public Roads, U. S. Government Printing Office, Washington, D. C. (1963).
"Relation between Rainfall and Runoff from Small Urban Areas," W. W. Horner and F. L. Flynt, Trans. Amer. Soc. Civil Engr., 101, 140 (1936).

Soil Mechanics in Engineering Practice, John Wiley \& Sons, Inc., New York (1966). K. Terzaghi and R. R. Peck.

Soils Engineering, M. G. Spangler, 2nd Edition, International Textbook Co., Scranton, Pa. (1960).
"Structural Characteristics of Reinforced Concrete Elliptical Sewer and Culvert Pipe," H. V. Swanson and M. D. Reed, Publ. No. 1240, Highway Research Board, Washington, D. C. (1964).
"Structural Design of Precast Concrete Box Sections for Zero to Deep Earth Cover Conditions and Surface Wheel Loads," Heger, F. J., and Long, K. N., ASTM Special Technical Publication STP 630, 1977.
"Test Program for Evaluation of Design Method and Standard Design for Precast Concrete Box Culvert with Welded Wire Fabric Reinforcing," Heger, F. J., Boring, M. R., and Bealey, M., Highway Research Record 518, 1974.
"The Supporting Strength of Rigid Pipe Culverts," Iowa Engineering Experiment Station, M. G. Spangler, Bulletin No. 112 (1933).
"The Theory of External Loads on Closed Conduits in the Light of the Latest Experiments," A. Marston, Iowa Engineering Experiment Station, Bulletin No. 96 (1930).
"Vertical Pressure on Culverts Under Wheel Loads on Concrete Pavement Slabs," Portland Cement Association, Publ. No. ST-65, Skokie, Illinois (1951).

CONCRETE PIPE DESIGN MANUAL CD

Engineers responsible for the design and specification of precast concrete pipe for sanitary sewer, storm drain and culvert applications will find the Concrete Pipe Design Manual an indispensable aid in selecting the type, size and strength requirements of pipe. Revised to include the most current design procedures, the Concrete Pipe Design Manual is now available in an electronic format. This searchable CD includes the same text information as the hardbound manual and provides quick access to:

- Standard Installations using the indirect design method to facilitate the design of a costeffective concrete pipe.
- More than 330 pages of tables and figures covering hydraulics of sewers and culverts, live loads and earth loads, supporting strengths and supplemental design data.
- Detailed example problems of specific applications illustrating the proper use of the timesaving design aids included in the Concrete Pipe Design Manual.
In addition to new state-of-the-art beddings developed over many years of investigation and research into the behavior of concrete pipe in the buried condition, the Concrete Pipe Design Manual CD contains the proven Marston/Spangler design procedure and beddings.

You will need Adobe Acrobat Reader Software. A link to the Adobe web site for this FREE software is located in the GET ACROBAT READER.doc on this CD.

AMERICAN CONCRETE PIPE ASSOCIATION

Founded in 1907, the American Concrete Pipe Association (ACPA) is a non-profit organization composed of manufacturers of concrete pipe and box culverts located throughout the United States, Canada and in over 30 foreign countries. ACPA membership also includes manufacturers and providers of equipment and services to the concrete pipe industry. The Association provides members with research, technical, educational, government relations and marketing support to promote and advance the use of concrete pipe.

For information on technical programs and literature available from the American Concrete Pipe Association, please contact the ACPA or visit our website.

CONCRETE PIPE DESIGN MANUAL CD-ROM LICENSING AGREEMENT IMPORTANT - READ BEFORE USING

IMPORTANT NOTICE: BY USING THIS PROGRAM, YOU WILL INDICATE YOUR ACCEPTANCE OF ALL THE TERMS AND CONDITIONS OF THIS LICENSING AGREEMENT. IT IS IMPORTANT THAT YOU READ THE ENTIRE AGREEMENT BEFORE USING THIS PROGRAM. IF YOU DO NOT WISH TO BE BOUND BY THE TERMS OF THIS AGREEMENT DO NOT USE THIS PROGRAM. ADDRESS YOUR CONCERNS TO THE AMERICAN CONCRETE PIPE ASSOCIATION,
1303 WEST WALNUT HILL LANE., SUITE 305, IRVING, TX 75038-3008.

Ownership of Program

Ownership of this program is retained by the American Concrete Pipe Association. It was not transferred in any manner to the licensee. This program is licensed to you, subject to the terms and conditions stated in this agreement. Failure to comply with any of the terms and conditions stated in this agreement will automatically terminate this agreement, in which case all disks and other materials must be immediately returned to American Concrete Pipe Association.

American Concrete Pipe Association specifically retains all rights not expressly granted to the licensee, and does not waive any rights under federal or state law, or under copyright statutes of the United States.

The licensee is expressly prohibited from making copies of this program, renting, loaning or in any manner transferring this program, or modifying, amending or otherwise altering this program. The licensee, however, is granted permission to make one copy of this program to be used solely for back-up purposes. Creation of derivative works is expressly prohibited.
User Responsibilities
The user of this software assumes sole responsibility for decisions made with the assistance of this soffware, and must exercise the highest standard of care and independent judgement in analyzing and checking condusions reached with the assistance of this software.

Limited Warranty

American Concrete Pipe Association warrants that the disks on which the software is distributed, and the documentation are free from defects in materials and craftsmanship. The Association also warrants that the software will substantially conform to specifications supplied. American Concrete Pipe Association will replace defective disks or written materials or correct substantial software errors. These are the only remedies available to the licensee for breach of warranty.

Except as described in the paragraph immediately above, AMERICAN CONCRETE PIPE ASSOCIATION MAKES NO WARRANTY, EITHER EXPRESS OR IMPIIED, WITH RESPECT TO THE SOFTWARE, THE DISKS OR ANY OTHER MATERIALS, INCLUDING THEIR QUALITY, PERFORMANCE, RELIABILITY, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The user is made specifically aware that software is exceptionally complex by its nature, and the possibility of errors in the software exists. Therefore, the user understands his responsibility to exercise independent professional judgement and to independently verify all conclusions, answers and recommendations. IN NO EVENT WILL AMERICAN CONCRETE PIPE ASSOCIATION BE LIABLE TO THE LICENSEE OR ANY OTHER PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ANY OTHER OF THESE MATERIALS. AMERICAN CONCRETE PIPE ASSOCIITION WILL NOT BE LIABLE IN ANY manNer for the Inability of this software to be used on any engineering project.

In no event will American Concrete Pipe Association be liable for any damages, including but not limited to lost profits, lost revenues, loss of data, damage to equipment, loss of use, cost of substitute software or claims of third parties.

THIS LIMITED WARRANTY AND THE REMEDIES DESCRIBED IN THESE PARAGRAPHS ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL, WRITEN, EXPRESS OR IMPLIED. No person, company, representative, agent or other person or entity has the authority to add to, modify or restrict this warranty in any way.

Some states do not permit the limitation or exclusion of implied warranties. Limitation of liability for incidental or consequential damages may also be restricted. As a result, some of the limitations or exclusions contained in this warranty may not apply to certain users.

Advice and Assistance

Local American Concrete Pipe Association producer members are available for reasonable consultation about this soffware, its uses and applications, prohibitions on its use, suggestions for its operation and the meaning and limitations of this licensing agreement.

[^0]: Answer: The design pipe sizes, slopes and other properties are as indicated in Illustration 2.4.

[^1]: 1 "Sewer Capacity Design Practice," by William E. Stanley and Warren J. Kaufman, Journal, Boston Soc. of Civ., Engrs., October, 1953. p. 320. Table 3.
 ${ }^{2}$ Gallons per capita per day.
 ${ }^{3}$ Sludge \& Sewage Treatment, Harold Bobbitt, 6-Edition, John Wiley \& Sons.

[^2]: "Part 10 Reinforced Concrete Culvert Pipe, Chapter 8, Concrete Structures and Foundations, AREMA Manual of Railway Engineering", American Railway Engineering and Maintenance-of-Way Association, 1999.

[^3]: Note: In 1996 AASHTO adopted the Standard Installations as presented in Chapter 4 of this manual, and eliminated the use of the Marston/Spangler beddings and design procedure for circular concrete pipe. The Standard Installations and the design criteria in Chapter 4 are the preferred method of ACPA. The older and less quantitative Marston/Spangler beddings and the design method associated with them are presented in this Appendix for those agencies and individuals still using this method.

[^4]: 1. Pipe widths are based on a wall thickness equivalent to thicknesses indicated for Wall B in ASTM C 76 and designated thicknesses in other applicable ASTM Standards. Loads corresponding to these wall thicknesses are sufficiently accurate for the normal range of pipe widths for any particular pipe size. For extra heavy wall thicknesses, resulting in a pipe width considerably in excess of the normal range, interpolation within the Tables and Figures may be necessary.
[^5]: Transition loads（bold type）and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and／or trench widths

[^6]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot
 Transition loads (bold type) and widths based on $K \mu-0.19$, $r_{\text {sdd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^7]: ＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foot，increase 20\％；etc．

[^8]: *For backfill weighing 110 pounds per cubic fcot, increase $10 a d s 10 \%$; for 120 pounds per cubic foot, increase 20%; etc
 Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation

[^9]: For backfil weighing
 Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^10]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc
 Transition loads (bold type) and widths based on K $\mu-0.19$, $r_{\text {sdp }}-0.5$ in the embankment equation

[^11]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc.
 Transition loads (bold type) and widths based on $K \mu-0.19, r_{s} d p-0.5$ in the embankment equation Interpolate for intermediate heights of backfill and/or trench widths

[^12]: Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^13]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
 Transition loads (bold type) and widths based on $K \mu-0.19$, $r_{s} d p-0.5$ in the embankment equation Transition loads (bold type) and widths based on $K \mu-0.19$, $r_{s} d p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^14]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot
 Transition loacs (bold type) and widths based on K $\mu-0.19$, r_{s} p- 0.5 in the embankment equation

[^15]: ＊For backfill weighing 110 pounds per cubic foot，increase loads 10% ；for 120 pounds per cubic foot
 ATransition loads（bold type）and widths based on K $K-0.19$ ，$r_{s d} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and／or trench widths

[^16]: *For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc UTansition loads (bold type) and widths based on $K \mu-0.19, r_{s} d p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^17]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc Δ Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^18]: Transition loads (bold type) and widths based on $K \mu-0.19, r_{s d}{ }^{\prime} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^19]: For backtill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20\%; etc
 Transition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 ATransition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^20]: For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foo
 Transition loads (bold type) and widths based on K $\mu-0.19$, $r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^21]: *For backfill weighing 110 pounds per cubic foot, increase loads 10%; for 120 pounds per cubic foot, increase 20%; etc.
 ATransition loads (bold type) and widths based on $K \mu-0.19, r_{\text {sd }} p-0.5$ in the embankment equation
 Interpolate for intermediate heights of backfill and/or trench widths

[^22]: *The value of the settlement ratio depends on the degree of compaction of the fill material adjacent to the sides of the pipe. With good construction methods resulting in proper compaction of bedding and sidefill materials, a settlement ratio design value of +0.5 is recommended.

