MIX DESIGN

0.00_0010_00_0000_000

American **Concrete Pipe** Association

Wet Cast (Slump)

Wet Cast (Slump)

Dry Cast (no Slump)

Dry Cast (no Slump)

Concrete Mix Design

• As the water to cement ratio increases, the strength of a concrete mix decreases.

• As the water to cement ratio increases, the strength of a concrete mix decreases.

As the surface area of the aggregate increases more water will be needed to maintain a given slump.

- Coarser Surface Texture
- Particle Shape

As the surface area of the aggregate increases more water will be needed to maintain a given slump.

• Particle Size Distribution

As the surface area of the aggregate increases more water will be needed to maintain a given slump.

• Particle Size Distribution

As the air content increases, the strength of the concrete decreases.

As the air content increases, the strength of the concrete decreases.

Water/Cement Ratio

American Concrete Pipe Association

It's a calculation: w/c ~ lbs. of water / lbs. of cement

= Water cement ratio

= 45 lbs ÷ 100 lbs

= 0.45 expressed as decimal

www.concrete-pipe.org

Water/Cementitious Ratio

 $\frac{\text{It's a calculation:}}{\text{w/c}_{\text{m}} \sim \text{lbs. of water / lbs. of cementitious}}$

- = 45 lbs ÷ (80lbs + 20 lbs)
- = 0.45 expressed as decimal

Water/Cementitious Ratio

Often when w/c is discussed its really w/c_m that is intended as the reference

Water/Cementitious Ratio

Water needs to be drinkable or meet ASTM 1602

www.concrete-c

ipe.org

Terminology

- Specific Gravity
 - The relative density of a material compared to water
 - The ratio of a material's weight to the weight of an equal volume of water

Specific Gravity

What about you?

Specific Gravity

Same Volume, but 2.70 Times More Mass

Cement – 3.15 Steel – 7.85 You - ???

Terminology

Bulk Specific Gravity (SSD):

- Used to determine the "solid volume" (absolute volume) of a material going into concrete
- It is determined by submerging the material in water for 24 hours in order to fill any permeable voids

Calculations for SSD Bulk Specific Gravity

Coarse Aggregate Using Basket Suspended in water:

B / (B - C) = SSD Bulk Specific Gravity

where:

B = weight of SSD sample in air C = weight of SSD sample in water

Calculations for SSD Bulk Specific Gravity

Field Calculation of SSD Bulk Specific Gravity:

Weight of Aggregate @ SSD Weight of equal volume of water displaced

> 1245g of SSD aggregate 469.81g of water displaced

= Specific Gravity

= 2.65

American Concrete Pipe Association

It's always about volume!

What is absolute volume?

What is Absolute Volume?

- Relationship of Materials to Volume
 - specific gravity of Type I Cement = 3.15
 - specific gravity of water = 1.0
 - 1 gallon of water weights 8.33 pounds
 - water weights 62.4 pounds / cubic foot

<u>Pounds of Material</u> = Absolute Volume S.G. X 62.4

Basic Concrete Mix Design

Materials	Pounds of material	S.G.	Abs Volume	667 3.15 X 62.4
Cement	667	3.15	3.39 🧹	1590
			-	2.60 X 62.4
Total Cementious	667			
Miller Stone	1590	2.6	9.80	1242
Evert Sand	1242	2.65	7.51	2.65 X 62.4
Water	300	1	4.81	
Air	5.5%		1.485	
Total	3799		27.00	
w / cm	0.45	Unit Wt.	140.72	•

 $\frac{\text{Lbs Material}}{\text{S.G. x 62.4}} = \text{Absolute Volume}$

S.G. x 62.4 x Abs. Volume = Lbs. of Material

Materials	Pounds of material	S.G.	Abs Volume	
Cement	667	3.15	3.39	
			-	300
Total Cementious	667			1.0 X 62.4
Miller Stone	1590	2.6	9.80	
Evert Sand	1242	2.65	7.51	
Water	300	1	4.81	0.055 X 27
Air	5.5%		1.485	
Total	3799		27.00	
w / cm	0.45	Unit Wt.	140.72	•

Materials	Pounds of material	S.G.	Abs Volume	
Cement	667	3.15	3.39	
			-	<u>36 gal</u>
Total Cementious	667			1.0 X 62.4
Miller Stone	1590	2.6	9.80	
Evert Sand	1242	2.65	7.51	
Water	36 Gal	1	4.81	
Air	5.5%		1.485	
Total	3799		27.00	
w / cm	0.45	Unit Wt.	140.72	-

Materials	Pounds of material	S.G.	Abs Volume	
Cement	667	3.15	3.39	
			-	36 gal x 8.33 lbs/gal
Total Cementious	667			1.0 X 62.4
Miller Stone	1590	2.6	9.80	
Evert Sand	1242	2.65	7.51	
Water	36 Gal	1	4.81	
Air	5.5%		1.485	
Total	3799		27.00	
w / cm	0.45	Unit Wt.	140.72	•

Water/Cement Ratio = W/C

Materials	Pounds of material	S.G.	Abs Volume		
				Water / Cer	nent
Cement	667	3.15	3.39	<u> </u>	Weight
			-	V	(mass)
Total Cementious	667				
Miller Stone	1590	2.6	9		
Evert Sand	1242	2.65	1.51		
Water	300	1/	4.81		
Air	5.5%		1.485		
Total	3799		27.00		
w / cm	0.45	Unit Wt.	140.72	-	

Density (Unit Weight)

@ 1.5% air, unit weight (density) = 147.26

Materials	Pounds of material	S.G.	Abs Volume	
			-	
Cement	534	3.15	2.72	
Fly Ash	133 👡	2.45	0.87	
Total Cementious	667			
Miller Stone		2.60	U.v.	7 <u>133 lbs. fly ash</u>
Evert Sand		2.65	0.00	667 Total lbs. Cm
Water	295	1.0	4.73	= 20% ash
Air	1.5%		0.405	
Total	962		8.72	
w / cm	0.44	Unit Wt.	110.33	-
		Sand/Agg	-	

It's about volume!

It's about volume!

Materials	Pounds of material	S.G.	Abs Volume	
			-	1
Cement	534	3.15	2.72	
Fly Ash	133	2.45	0.87	Properties the said to
Total Cementious	667			vield 27 ft ³ but how
Miller Stone	\frown	2.60	0.00	much sand, stone
Evert Sand		2.65	0.00	what ratio?
Water	295	1.0	4.73	
Air	1.5%		0.405	
Total	962		8.72	ratio is by volume
w / cm	0.44	Unit Wt.	110.33	
		Sand/Agg	(-)	
		lt's ab	out volum	e!
			\mathcal{C}	
		America	an Concrete Pipe A	

Materials	Pounds of material	S.G.	Abs Volume	
			-	_
Cement	534	3.15	2.72	Volume without
Fly Ash	133	2.45	0.87	aggregate = 8.72
Total Cementious	667			
Miller Stone		2.60	0.00	
Evert Sand		2.65	0.00	27.00 - 8.72 =
Water	295	1.0	4.73	18.28 ft ³ required
Air	1.5%		0.405	
Total	962		8.72	
w / cm	0.44	Unit Wt.	10.32	
		Sand/Agg	-	

It's about volume!

American Concrete Pipe Association

It's about volume!

American Concrete Pipe Association

Sand to Aggregate Ratio

Calculating Sand & Stone to Yield 27ft³ of Concrete

Assume this concrete needs to have Sand / Aggregate ratio of 0.42

American Concrete Pipe Association

Calculating Pounds of Sand

Pounds of Material S.G. X 62.4

= Absolute Volume

Pounds of Material (Sand)

 $= 7.68 \text{ ft}^3$

2.65 x 62.4

Sand = 1270 lbs

Evert Sand S.G. = 2.65

Calculating Volume of Stone

Calculating Pounds of Stone

Pounds of Material

= Absolute Volume

S.G. X 62.4

 $\frac{\text{Pounds of Material (stone)}}{2.60 \times 62.4} = 10.60 \text{ ft}^3$

Stone = 1720 lbs

Miller Stone S.G. = 2.60

SSD Mix Design

American Concrete Pipe Association

Materials	Pounds of	50	Abs	
Waterials	material	5.6.	Volume	
			-	
Cement	534	3.15	2.72	
Fly Ash	133	2.45	0.87	
Total Cementious	667			
Miller Stone	1720	2.60	10.60	
Evert Sand	1270	2.65	7.68	
Water	295	1.0	4.73	
Air	1.5%		0.405	
Total	3952		27.00	
w / cm	0.44	Unit Wt.	146.36	
		Sand/Agg	0.42	

Aggregate Moisture

Aggregate Moisture

Moisture Management is Critical (How much free water)

Total aggregate moisture = Aggregate absorption + Free water

Moisture Management is Critical (How much free water)

Aggregate Absorption = Total aggregate moisture - Free water

Moisture Management is Critical (How much free water)

Free Water = Total aggregate moisture - Aggregate absorption

What if we do not make moisture corrections

Moisture Adjustments

Moisture Management is Critical (How much free water) Total aggregate moisture = aggregate absorption + free water

- Stone 3.0% = 1.5% + free water, (% free water = 1.5%) $0.015 \times 1720 = 26$ pounds of free water on the Stone
- Sand 5.5% = 0.85% + free water, (% free water = 4.65%)0.0465 X 1270 = 59 pounds of free water on the Sand

Moisture Management is Critical (How much free water)

Total aggregate moisture = aggregate absorption + free water

	Total Moisture %	Absorption %	Free %	Moisture Adjustment
Miller Stone	3.00	1.50	1.50	26
Evert Sand	5.50	0.85	4.65	59

Water Adjustment

If 26 + 59 pounds of water rides in on the aggregates you must take that amount of water out of the <u>BATCH</u> water.

Design water	295
Water on aggregates	-85
Batch water	210

Moisture Adjustment

<u>Total moisture</u> = Free moisture + Aggregate absorption

Materials	Pounds of material	S.G.	Abs Volume	SSD	Moisture Adjustme	e Batch Weight ent yard	-
Cement	534	3.15	2.72	534		534	-
Type F ash	133	2.45	0.87	133		133	-
Miller Stone	1720	2.6	10.60	1720	26	1746	-
Evert Sand	1270	2.65	7.68	1270	59	1329	
Water	295	1.0	4.73	295	-85	210	
Air	1.5%		0.405	1.5%			
Total	3952		27.00	3952		→ 3952	_
Density	146.4			\sim		146.4	-
-							
		Total Moisture %	Absorption %	Free %	Moisture Adjustment	SSD & ba will be th	itch totals ne same
	Miller Stone	3.00	1.50	1.50	26		
	Evert Sand	5.50	0.85	4.65	59		

Where Can I Get This?

 Portland Cement Association (PCA) 5420 Old Orchard Road Skokie, IL 60077-1083

847 966-6700 PH 847 966-8389 FX Info @ cement.org

