

Curing

- Hardening of concrete
- Hydration→ CSH gel
- Accelerated curing
 - The rate of hydration increases as the ambient temperature increases
- Maintaining moisture in the concrete is critical

Proper Curing is Essential

- Reduces permeability
 - Essential for structure watertightness
 - Improves durability
- Optimal strength achieved

Essentials for Proper Curing

Maintain moisture

Maintain temperature

蒙

Concrete Strength vs Moisture Condition

Proper moisture and temperature result in increased concrete strength

Low Temperature vs Strength

Compressive Strength % of 28 day 73°F(23°C) concrete

Curing Methods

- Maintaining moisture by wetting
- Prevent moisture loss by sealing
- Accelerated curing

Maintaining Moisture by Wetting

Wet burlap

- Spraying/Misting
- Fogging

Spraying/Misting

Cold or hot

Very fine droplets

Air pressure

Effective for higher cement content and warmer climates

Prevent Moisture Loss by Membrane Sealing

• Forms

- Tarps / Polyethylene
- Curing Compounds
 - Caution:
 - If w/c < 0.5
 - With pozzolanic mixes

Accelerated Curing

- Dry Heat
 - Use with caution: difference between accelerated curing and maintaining heat
 - Heated beds (hollow core)
 - Electric or gas heaters convection heat
 - Infrared heating radiant heat
- Low pressure steam
 - Boilers
 - Steam generators
- Admixtures

Note: Raise concrete temperature while maintaining high humidity

Accelerating Admixtures

- 2 Classes of Admixtures:
 - Set Accelerator
 - Strength Accelerator (Early Age)
- Calcium Chloride is the most common in Ready mix, but BEWARE should not be used in precast reinforced concrete
- Several non-chloride, non-corrosive accelerators, but generally most are not as effective as calcium chloride

Considerations for Accelerated Curing

- As a rule of thumb, a temperature increase of 18°F doubles rate of hydration
- High temperatures with low humidity can crack the product
- The lower the curing temperature, the longer the product must be cured to achieve comparable early strengths

Low Pressure Steam Curing

- Provides both heat and humidity
- Product is heated by the warmer steam condensing on it
- Moisture evaporation is minimized

Typical Accelerated Steam Curing Cycle

- Preset (< 90 degrees) at least one hour
- Ramp (Temperature Rise) at 20F to 40F per hour
- Hold / Soak (at target temperature) varies with the product
- Cool Down

Idealized Accelerated Steam Curing Cycle

- 1) Preseting
- 2) Ramping
- 3) Holding
- 4) Cooling

Time After Pouring (Hours)

Concrete Target Temperatures

- Concrete Pipe (Typical for Accelerated)
 - 120° F to 140° F (50° C to 60° C)
 - 4 to 6 hours
- Precast (including Pipe)/Prestress limits (ACI)
 - 160° F (71° C) in Canada
 - 160° F (71° C) in USA
 - 8 to 12 Hours

Wet Cast Products

- Leave forms on as long as possible
- Check with supplier when using accelerated admixtures

Dry Cast Products

Require 90 to 100% humidity

Must protect from drafts

Special Conditions

Hot weather curing

- Shade, sprinkle coarse aggregates
- Add ice to mix water or use water chiller
- Shelter product from direct sunlight

Special Conditions

Cold weather curing

- Keep fresh concrete temperature > 50°F
- Heat aggregates
- Heat water

Reducing Energy Costs

- Determine actual curing cost
- Review curing cycle
 - Preset, ramp, hold
- Curing chambers
 - Insulation, partitions, canopies
- Prevent flueing
 - Direct steam flow out curing cell bottom only
 - No steam leakage along the sides or through the top

PIPE.ORG

Conclusion: Want smoke flowing out of cell

Additional checks for Flueing

- Light a match
 - Flame flows in if Flueing
- If the floor of the cell is cold and dry
 - Cold air pulled into the cell
 - Flueing.
- If the floor is warm and wet
 - Steam flowing out of the kiln bottom
 - Not flueing

www.maxim-ic.com ---- iButton

800-336-6933

DS1921K - starter kit

DS19216 – extra button

