CALCULATIONS & REVIEW

0,00_00,00_00_00_00_00

American **Concrete Pipe** Association

QUALITY SCHOOL

Calculations and Review

	sture Calculation	IS		
% Total Moisture =	$=\frac{(W_{wet}-W_{dry})}{W_{dry}} +$	100		
Free Moisture = Tota	al Moisture – Abso	rption		
Mix Design Calculations	Steel Area Calculations		ulations	
$Volume = \frac{Weight}{SG * 62.4}$	$A_{wire} = \pi r^2$, $OR A_{wire} = \frac{\pi * d^2}{4}$		$A_{wire} = \frac{\pi * d^2}{4}$	
Weight = Volume * SG * 62.4		A	* 4	
ement SG = 3.15	d_{wi}	$re = \sqrt{\frac{-w_i}{w_i}}$	$\frac{\pi}{\pi}$	
Gal = 8.33 lb		Aurin	* 12	
			$A_{steel} = \frac{S}{S}$	
yd ⁵ = 27 ft ⁵	A _{ste}	$eel = -\frac{mon}{2}$	5	
yd 5 = 27 ft 5 annsity of Water = 62.4 lb/ft 5	A_{ste} S = Wire Spacing	eel =	5	
yd ⁵ = 27 ft ⁶ annihy of Water = 62.4 fb/ft ³ D-Load Calculations	A _{ste} S = Wire Spacing ASTM C76	D-Load R	equirements	
yd ³ = 27 ft ⁶ ennisty of Water = 62.4 kb/ft ³ D-Load Calculations $DLoad (D) = -\frac{Load (lb)}{Lcod}$	A _{ste} S = Wire Spacing ASTM C76 CLASS	D-Load R	equirements	
yd ⁵ = 27 ft ⁵ ensity of Water = 62.4 fb/ft ³ $D-Load Calculations$ $DLoad (D) = \frac{Load (lb)}{DLongth (ft)}$	A _{sta} S = Wire Spacing ASTM C76 CLASS	D-Load R 0.01″ 800	equirements ULTIMATE 1200	
$pd^{5} = 27 \text{ fs}^{5}$ ensity of Water = 62.4 lb/fs ³ $D-Load Calculations$ $DLoad (D) = \frac{Load (lb)}{Length (ft)}$ $Load = DLoad + Dirmeter (ft)$	A _{sta} S = Wire Spacing ASTM C76 CLASS 1	D-Load R 0.01" 800 1000	equirements ULTIMATE 1200 1500	
$yd^{5} = 27 \text{ fs}^{5}$ ensity of Water = 62.4 lb/ft^{3} $D-Load Calculations$ $DLoad (D) = \frac{Load (lb)}{Length (ft)}$ $Load = DLoad * Length + Diameter$	A _{ste} S = Wire Spacing ASTM C76 [[[]]]]]	D-Load R 0.01" 800 1000 1350	equirements ULTIMATE 1200 1500 2000	
$\begin{array}{l} \textbf{D-Load Calculations}\\ \textbf{D-Load (D)} = \frac{Load (lb)}{Length (ft)}\\ Load = DLoad + Length + Diameter \end{array}$	A _{sta} S = Wire Spacing ASTM C76 CLASS 1 11 111 111 111	D-Load R 0.01" 800 1000 1350 2000	equirements ULTIMATE 1220 1500 2000 3000	

QUALITY SCHOOL

Calculations and Review

ACPA Q-SCHOOL CALCULATIONS 1a. Calculate the total moisture content in the coarse aggregate based on the following information: Weight of wet rock = 1725g, Weight of dry rock = 1674g, Absorption = 1.2%	4a. Given the wire diameter of 0.226 inches, calculate the area of the wire.
1b. What is the free moisture content of the coarse aggregate?	4b. What is the wire size designation for this smooth wire?
 Given 400 lbs of Cement, 100 lbs of Fly Ash and 23.4 Gallons of Water per cubic yard of concrete, calculate the w/c ratio of the mix. 	5a. Given the following mesh: 2x8 W5.0xW2.5 94" \times 600' 1/2x1/2. Calculate the wire diameter of the circumferential wire in inches.
3a. Given the following: 400 lbs of Cement (SG = 3.15), 100 lbs of Fly Ash (SG = 2.7), 23.4 Gal of Water, 3% Air. Calculate the volume of aggregate needed for the mix to equal one cubic yard.	5b. What is the circumferential steel area per foot of length?
3b. Sand and rock are split 60/40 by volume (60% sand, 40% rock), calculate the weight of sand and rock in lbs. (sand SG = 2.62 , rock SG = 2.67)	6a. 8 ft long, 36" CL4 B-Wall RCP was observed to develop a 0.01" D-load crack at 46,200 lbs. Does this meet the CL4 0.01" D-load requirement?
3c. The total moisture content of sand = 6.4% , rock = 2.2% , Calculate the adjusted batch quantities for sand, rock and batch water (absorption of sand = 1.3% , rock = 1.1%)	6b. What is the required load to produce the 0.01° D-load crack for the RCP?
1	2

1a. Calculate the total moisture content in the coarse aggregate based on the following information: Weight of wet rock = 1725g, Weight of dry rock = 1674g, Absorption = 1.2%

 $\frac{\text{Wet Wt.} - \text{Dry Wt.}}{\text{Dry Wt.}} \times 100 = \text{Total Moisture}$

1b. What is the free moisture content of the coarse aggregate?

Total Moisture – Absorption = Free Moisture

1a. Calculate the total moisture content in the coarse aggregate based on the following information: Weight of wet rock = 1725g, Weight of dry rock = 1674g, Absorption = 1.2%

 $\frac{\text{Wet Wt.} - \text{Dry Wt.}}{\text{Dry Wt.}} \times 100 = \text{Total Moisture}$

1b. What is the free moisture content of the coarse aggregate?

Total Moisture – Absorption = Free Moisture

2. Given 400 lbs of Cement, 100 lbs of Fly Ash and 23.4 Gallons of Water per cubic yard of concrete, calculate the w/c ratio of the mix.

W/C = W/Cm Water/Cementitious

3a. Given the following: 400 lbs of Cement (SG = 3.15), 100 lbs of Fly Ash (SG = 2.7), 23.4 Gal of Water, 3% Air. Calculate the volume of aggregate needed for the mix to equal one cubic yard.

 $\frac{\text{Mass}}{\text{S.G x 62.4}} = \text{Volume} \qquad \frac{\text{Air \%}}{100} \text{ x 27 ft}^3 = \text{Volume}$

3b. Sand and rock are split 60/40 by volume (60% sand, 40% rock), calculate the weight of sand and rock in lbs. (sand SG = 2.62, rock SG = 2.67)

 $\frac{\text{Percentage}}{100} = \text{Decimal Equiv.} \quad \text{Volume x S.G. x 62.4} = \text{Weight}$

3c. The total moisture content of sand = 6.4%, rock = 2.2%, Calculate the adjusted batch quantities for sand, rock and batch water (absorption of sand = 1.3%, rock = 1.1%)

Total Moisture – Absorption = Free Moisture

4a. Given the wire diameter of 0.226 inches, calculate the area of the wire.

 $\pi = 22/7 = 3.14$ Area = πr^2 or Area = $\frac{\pi x D^2}{4}$

CONCRETEPIPE.ORG

Calculations and Review

4b. What is the wire size designation for this smooth wire?

Area x 100 = Size Designation

W = Smooth Wire D = Deformed Wire

5a. Given the following mesh: 2x8 W5.0xW2.5 94" x 600' 1/2x1/2. Calculate the wire diameter of the circumferential wire in inches.

Wire Size \div 100 = Area Diameter = $\sqrt{(\text{Area x 4} \div \pi)}$

5b. What is the circumferential steel area per foot of length?

 $\pi r^2 \, x$ number of wires in one foot

6a. 8 ft long, 36" CL4 B-Wall RCP was observed to develop a 0.01" D-load crack at 46,200 lbs. Does this meet the CL4 0.01" D-load requirement?

CONCRETEPIPE.ORG

Calculations and Review

6b. What is the required load to produce the 0.01" D-load crack for the RCP?

Load = D-Load x length of pipe (ft) x diameter of pipe (ft)

6a. 8 ft long, 36" CL4 B-Wall RCP was observed to develop a 0.01" D-load crack at 46,200 lbs. Does this meet the CL4 0.01" D-load requirement?

